
1

RAFIK HARIRI UNIVERSITY

SELF-BALANCING ROBOT

By

MOHAMMAD SAYDEH

A capstone research project submitted partial fulfillment of the requirement for the

degree of Master of Science in Mechatronics Engineering of the college of Engineering

Specialty of Mechanical and Mechatronics Engineering Department, at Rafik Hariri

University.

MESHREF –LEBANON

DECEMBER 2021

2

RAFIK HARIRI UNIVERSITY

SELF-BALANCING ROBOT

By

MOHAMMAD SAYDEH

Approved by

DR. HASSAN HARIRI Signature

__
_

College of Engineering

Date of Thesis Research Defense [December 2021]

RAFIK HARIRI UNIVERSITY

3

THESIS RESEARCH RELEASE FORM

I. [MOHAMMAD AHMAD SAYDEH]

 Authorize the RAFIK HARIRI UNIVERSITY to supply copies of my project to libraries

or individuals upon request

 Do not authorize the RAFIK HARIRI UNIVERSITY to supply copies of my project to

libraries or individuals for a period of two years starting with the date of the project

defense

 Signature

 Date

4

ACKNOWLEDGEMENTS

I would like to express my gratitude first and foremost for my family’s endless

support since the beginning of my Engineering studies. I want to also thank my project

supervisor Dr Hassan Hariri for suggesting this topic and for his help comments and support.

Last but not least, I want to thank my advisor Dr Bassam Moslem and the MME department

chairperson Dr Nadim Diab for their help and understanding particularly during my Masters

journey.

5

ABSTRACT

This project represents the work done to model and simulate a two-wheeled self-

balancing robot TWSBR using Proportional-integral-derivative (PID) and Linear-quadratic

regulator (LQR). These robots are commercially present, yet they still attract several control

enthusiasts to study their stability, using different algorithms, due to their sustainable design

and advantages. In this book, the commercial OSOYOO TWSBR is modeled on Matlab

Simscape, and simulated using PID and LQR controllers on Matlab Simulink. The goal of

the controllers is to monitor and maintain the robot’s tilting angle and position using its

displacement force. After modeling and tunning, the controllers’ outcomes are evaluated and

compared using the control system evaluation parameters and control effort. LQR yielded

the most promising results; however, it required more sensors to access the robot’s states.

Therefore, the LQR with minimum order observer controller is developed for sensors’ cost

reduction. The latter competed with LQR but was less stable and took longer time to reach

steady state. For future work the goal is to control the real robot using these 3 different

controllers and compare their results.

6

TABLE OF CONTENTS

ACKNOWLEDGMENT .. i

ABSTRACT ...ii

TABLE OF CONTENTS .. iii

LIST OF FIGURES ... v

LIST OF TABLES..vii

Chapter Page

1. INTRODUCTION ... 1

1.1 Background Information ... 1

1.2 Motivation ... 2

2. LITTERATURE REVIEW ... 4

2.1 Principle of Inverted Pendulum .. 4

2.2 Previous Work .. 4

2.3 Purpose.. 7

2.4 PID .. 7

2.5 LQR .. 8

7

3. SIMULATION .. 11

3.1 Modeling of the 2WD Robot .. 11

3.1.1 Cart... 11

3.1.2 Chassis ... 13

3.2 Simulation: Common Blocks .. 16

3.3 Simulation: PID .. 17

3.4 Simulation: LQR ... 20

3.5 Simulation: LQR with Minimum-Order Observer MOO 25

3.5.1 Inverted Pendulum Model LQR with MOO .. 26

3.5.2 LQR with MOO ... 30

4. COMPARISON AND DISCUSSION ... 34

4.1 Displacement .. 34

4.2 Angle ... 35

4.3 Control Effort .. 37

5. CONCLUSION AND FUTURE PERSPECTIVES 39

4.1 Conclusion .. 39

4.2 Future Perspectives ... 39

APPENDICES .. 40

REFERENCES ... 43

8

LIST OF FIGURES

Figure Page

1. Figure 1 Segway Self Balancing Human Transporter .. 2

2. Figure 2 Balanduino.. 2

3. Figure 3 Legway ... 3

4. Figure 4 TWSBR: Simplified ... 4

5. Figure 5 PID controller ... 8

6. Figure 6 State Space Model Describing the Dynamic System's State-modified 9

7. Figure 7 OSYOO 2WD Balance Car Robot Kit ... 11

8. Figure 8 Cart's Model on Simulink ... 13

9. Figure 9 Shaft, Wheel Body and Wheel Tire Simscape Models 13

10. Figure 10 represents the chassis’s model implemented on Simulink 15

11. Figure 11 Levels controller battery and rod's Simscape models 15

12. Figure 12 Simscape Robot's Model .. 16

13. Figure 13 Robot’s Plant .. 17

14. Figure 14 PID Controller .. 18

15. Figure 15 PID: Displacement and tilting angle responses in meter and degrees,

respectively, in function of time in seconds ... 19

16. Figure 16 PID:Control Effort with respect to time ... 19

17. Figure 17 LQR Block Diagram .. 20

18. Figure 18 Margin Goal ... 21

19. Figure 19 Step Tracking Goal ... 22

20. Figure 20 Tracking Goal ... 23

21. Figure 21 Poles Goal... 24

22. Figure 22 LQR: Displacement and tilting angle responses in meter and degrees,

respectively, in function of time in seconds ... 25

9

23. Figure 23 LQR: Control Effort with respect to time .. 25

24. Figure 24 Inverted Pendulum Free Body Diagram ... 26

25. Figure 25 Rectangular prism mimicking the chassis .. 29

26. Figure 26 LQR (real plant) with Observer Design ... 30

27. Figure 27 LQR MOO block diagram ... 31

28. Figure 28 MOO block diagram ... 32

29. Figure 29 LQR MOO: Displacement and tilting angle responses in meter and

degrees, respectively, in function of time in seconds ... 32

30. Figure 30 LQR MOO: Control Effort with respect to time 33

31. Figure 31 Displacement response with respect to time for PID (yellow), LQR

(red) & LQR with MOO (blue)... 34

32. Figure 32 Angular response with respect to time for PID (yellow), LQR (red) &

LQR with MOO (blue) ... 36

33. Figure 33 Control effort with respect to time for PID (yellow), LQR (red) & LQR

with MOO (blue) .. 37

10

LIST OF TABLES

Table Page

1. Shaft Geometry & Mass ... 12

2. Left & Right Wheels Geometry & Mass .. 12

3. Geometry & Mass of the Chassis's Levels ... 14

4. Rods Geometry Mass & Numbers .. 14

5. Robot's Characteristics .. 29

6. Displacement: Control metrics for PID LQR & LQR with MOO 34

7. Angle: Control metrics for PID LQR & LQR with MOO 36

8. Control Effort for PID LQR & LQR with MOO .. 37

11

CHAPTER 1

INTRODUCTION

1.1 Background Information

When talking about control systems, we are talking about autonomous robots, self-

driving cars, drones, transportation means, heavy industries, home appliances, medical

devices, cell phones, computers etc. The control theory has been changing lives since the

beginning of time, and it is considered as a solution for various complex and dynamic systems

including self-balancing robots. One of the most important and considerable milestones in

the robotics field’s history is the invention of self-balancing robots. Since the 1980s, these

robots attracted researchers, from different countries, to study their systems [1]. Despite their

non-linearity instability and complex yet broad control systems, self-balancing robots have

found their application in multiple fields due to their sustainable design. These fields include

military or civilian self-transport alternatives or assistants, dangerous and normal

workplaces, research, and testing of various applicable control algorithms [1,2]. What is in

common between all these self-balancing robot operators, is that they are all based on the

inverted pendulum theory. The TWSBR combines the inverted pendulum theory with two

wheeled robot and the dynamics control. Self-balancing robots existed in the market during

the past two decades, starting from the famous Segway, as shown in Figure 1, which is

independently controlled [3]. The LegWay robot, as shown in figure 2, from Lego company

was also designed to move on irregular or inclined surfaces but using remote control

operation [3]. Other self-balancing robot Balanduino, as shown in figure 3 which is open

source, and other robots developed by researchers [4]. In addition to their considerable price,

these robots are eco-friendly since they are electrically powered, and time and space efficient

due to their small size and extra flexibility. However, each of these robots, whether

commercially present or built by robotics enthusiasts, is built using a unique control

algorithm, PID and LQR, Fuzzy Logic Controller (FLC), etc. And in research testing the

12

control theory applied on such robots is done via simulation prior any code implementation

on the microcontroller. This is due to the time cost and risk that simulation saves during

multiple parameters tuning and results variation.

1.2 Motivation

Controlling TWSBRs is a newly and continuously evolving field. These types of

robots are proved to be sustainable in terms of design and environmental effect. In addition,

few researchers worked on simulating different control algorithms on a moving self-

balancing robot and then compare the results and decide on the appropriate control method.

For the robot’s model little to no work involved modeling OSOYOO 2WD Balance Car

Robot, on MATLAB Simscape, and implement it as a plant in these different control systems.

Figure 1: Segway Self Balancing Human Transporter

Figure 1: Balanduino

13

Figure 2: Legway

14

CHAPTER 2

LITERATURE REVIEW

2.1 Principle of Inverted Pendulum

TWSBR is based on the fundamental of an inverted pendulum, where the wheels are

simplified as a cart on wheels and the robot’s chassis is compared to the pole, as represented

in Figure 4. In this section the dynamics of the inverted pendulum will be discussed.

Figure 3: TWSBR: Simplified [9]

Other than TWSBRs, the inverted pendulum concept has plenty applications like

human walking robots, earthquake resistant building design and missile launchers [7]. The

widest and most common example of an inverted pendulum is the human being. The inverted

pendulum as shown in Figure 4 is a non-linear dynamic system, and despite its complexity,

many researchers have worked on developing and enhancing its control system.

2.2 Previous Work

Previous work to be reviewed in this project fall in the scope of simulating single or

multiple control methods on a TWSBR and compare the results if applicable. The work cited

will be listed and described according to their ascending dates.

In this work two control systems are involved in maintaining robot’s balance: PID

and LQR. These methods are implemented to control two subsystems: self-balance, during

motion, and yaw rotation, which involves regulating steering angle during turning. It must

be mentioned that PID was applied to both subsystems and LQR for self-balancing only.

After simulation, the two methods were compared, and it was found that the LQR

15

outperformed PID. PID involved using single feedback signal, either tilt angle or tilt angle

rate from accelerometer or gyroscopes, for control value generation. LQR had the advantage

of combining all output state variables including tilt angle rate, tilt angle and position to get

the control value. This usually allows the system to achieve stabilization in the desired time

even if one variable was inaccurate. For this reason, LQR achieved the steady state faster

than PID [3].

When comparing controllers in this work, researcher included, in addition to the LQR

and PID controllers, the FLC. These controllers were implemented on a two-wheeled

inverted pendulum mobile robot. After experiments it was found that the FLC outperformed

LQR and PID by having a less overshoot and faster response; however, it consumed higher

energy. And comparing LQR and PID alone both methods took the same rise time and

energy; however, LQR showed a faster response and less overshoot than PID [5].

Rahman et al. also compared LQR PID and FLC on a TWSBR using Robot Operating

System ROS and Gazebo. It was found that when plotting real time pitch angles with respect

to time, PID gave the most stable performance, however faster response was recorded with

LQR. On the other hand, the FLC was the most non-stable, due to its inefficient tuning [6].

This work involved the design development and analysis of TWSBR using a novel

control method involving PID. In most common controllers and feedback systems, state

estimation is done via the Inertial measurement unit IMU, which includes motion measuring

sensors, and feedback is received from the actuator using tachometers or encoders. This work

is based on generating the feedback after an on-board state estimation algorithm, by that

eliminating the need of actuators. This robot demonstrated robust performance by taking a

very fast response to correct any disturbances from equilibrium. The controller gains played

an important role in reaching stability with minute undesirable errors, where they were

adjusted according to the robot’s height and mass distribution. In addition to the gains,

moment of inertia, motor and IMU parameters proved to affect the conserving stability. It

must be noted that choosing precise sensors and actuators could highly eliminate

imperfections in stability [4].

Another work involved experimental comparison between the conventional PID

controller and the optimal LQR controller. These controllers were simulated using the

16

MATLAB/Simulink platform and then were digitally implemented on the TWSBR. The aim

was to maintain the robot in vertically balanced despite disturbances. Comparison was done

on the level of stabilization adequate dynamic response and control robustness. Results

showed that LQR is simpler since it requires 2 gains for control; however, the PID needs

computational calculation. Both controllers meet the specification: setting time less than 200

ms and robot’s vertical posture less than 5 degrees tilt. On the other hand, the PID had the

overshoot issue due to its high integral side gain, but with smaller steady state error. LQR

had a better transient response minimizing overshoots and compensating steady state error,

making the reaction to body falling and imbalances faster and smoother. This makes the

general LQR controller practice better than PID controller [2].

Thwin et al., applied the LQR algorithm into the TWSBR system, and they stated that

LQR is an automatic method of getting the optimal state-feedback controller. In this work

the system’s full state information regarding the cart’s position and velocity are received

from a dc motor encoder, and the pendulum’s angular position and velocity are attained from

an IMU sensor. The pitch angle was determined using a complimentary filter that assessed

the gyroscope and accelerometer signals. The robot was implemented sing the Arduino Mega

controller, which can be compatible with MathWorks and Simulink (using the Rensselaer

Arduino Support Package). They concluded that Q and R values must be carefully tuned due

to their sensitive effect on the control system, and that sensors must be carefully selected,

and their signals must be filtered and conditioned to remove any noise affecting the control’s

performance [7].

Another most recent work about TWSBR was done to apply control methods on the

robot so it can self-balance. This system utilized signals from an accelerometer and

gyroscope and send them to the microcontroller and in parallel the latter gives rotation

instructions to the motor drive of the wheel so that the TWSBR can self-balance. As cited by

Patil et al. this system better describes an optimal robot able to make sharp and fast turns and

navigate in tight areas, which will be helpful in plenty of applications. Controlling this system

is done via PID tuning, and its implementation is done on the ATEGA-328P microcontroller.

The robot was able to effectively balance itself during forward and backward leaning;

17

however, its performance can be enhanced by improving the motor speed readings’ precision,

hence enhancing stability [8].

2.3 Purpose

This project will be based on modeling the self-balancing car “OSOYOO 2WD”

model built and simulated on Matlab Simscape. This model will be simulated using different

control algorithms the PID and LQR to ensure system stability. The robot must travel and

reach a certain distance while maintaining the tilting angle the closest to zero in the least

amount of time and with the least control effort. The output responses, settling time,

overshoot control effort and other metrics will be assessed and compared among the 2

simulation models. Based on this assessment the most optimal model will be chosen for

future real implementation on the robot’s kit. According to literature review, still no similar

work involved using this model. This work will add a great value to the huge field of

controlling TWSBRs which outperform normal robots due to their sustainable architecture.

2.4 PID

A Proportional P, Derivative D and Integral I control technique is one of the most

known feedback mechanisms used in control plants. Briefly the purpose of this controller is

to forcefully match the feedback to a setpoint, in other words to set the angular position of

the pendulum, which is continuously acquired, to 𝜋. PID systems as well are known as SISO

Single Input Single Output systems. The three adjustments in PID aid the plant in

compensating system changes. It must be noted that PID controllers provide their best

performance when included in light-weight systems. It is also suggested for an often load

and setpoints varying structures. The three working pillars in PID control must be

individually modified or tuned to trigger the adjustment factor [11].

As shown in Figure 5, Without any of the PID pillars, the plant will work on

processing the input and executing an output, which in non-linear systems will be different

by a quantity called steady state error. To match the output to the set or required goal, a

controller must be introduced. In case of PID, when introducing the first term which is “P”,

the controller will work on multiplying the given error at any time t with a certain constant

or gain Kp. This, in some systems will help in matching the output to the set point faster,

18

until the difference becomes null. For this reason, the proportional part is called to be used

for error elimination [3]. Some system will require an additional term since P alone can

sometimes never nullify the steady state error. In this case one can refer to the integrator

term, which accordingly will sum the input over time, which will make it the memory of the

system. When the steady state error in non-zero the value will be integrated pushing the

output to reach the setpoint. In some systems the PI alone can lead to overshoot due to the

non-ideal approach it gives, therefore, to predict the future overshoot, the derivative term

will be needed to measure the rate of error or how fast the error is increasing or decreasing.

If the error is decreasing as we are starting to reach the set point, the derivative will output a

negative term which will be summed to the rest of the terms and therefore reducing the

control signal to prevent overshoot. Explaining the theory behind PID makes it easy;

however, gains must be carefully tunned, and one must compromise based on the application.

Figure 4: PID controller

2.5 LQR

Linear quadratic regulator controller is another advanced type which is based on

using state space systems as shown in equations (1) and (2) and represented in Figure 6.

𝑥̇(𝑡) =Ax(t)+Bu(t) (1)

 y(t)=Cx(t)+Du(t) (2)

Where 𝑥(𝑡)̇ is the state vector, which varies according to the variable states in the

system x(t) and any external input u(t), this relationship is governed by the matrix A, which

describes how the internal states are connected to each other’s. The variable states in the

system are described by the minimum set of variables needed to fully describe the system

and predict future behavior. B is also a matrix which describes how the input enter to the

system and which state is it affecting.

19

The y(t) vector is the output of the system and in other words it is the part the user is

interested to know. C matrix describes how the states are connected to produce the output

and D acts as standard gain multiplied to the input.

Figure 5: State Space Model Describing the Dynamic System's State-modified [9]

LQR is called the optimal control technique when compared to the pole placement

technique. Briefly the pole placement technique involves manually choosing 2 gains: the

state vector gain and the scaled reference gain (as a pre-compensator for the steady state

error), as shown in Figure 5 “K and Kr”, to move the system into stability by having the

poles, which are identical to the eigen values of A matrix, on the left axis side. LQR involves

providing optimal gains to reduce the general cost function as in equation 3, and to increase

performance with minimum effort.

 J=∫ [
∞

0
𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢]𝑑𝑡 (3)

And according to Figure 6:

 u=rkr -Kx (4)

Where J is the cost, which is always a scalar value, x is the state variable, u is the

input and t is the time. Q and R determine the weights which heavily influence the cost. Q is

a matrix that through it we can choose what variable to penalize, and R is a real constant

number.

After setting the state variables of the system, the user can start adjusting the Q and

R values based on the design. The optimal gain or the K matrix can be computed numerically

on Matlab according to the “lqr” function, the response can be simulated, and re-adjustments

20

can be made. In pole placement the user manually places the poles by adjusting the K values;

however, in LQR Q and R are tuned accordingly.

21

CHAPTER 3

SIMULATION

Simulation in this project is done on 2 different models on the Matlab Simscape

environment. Technically, Simscape enables fast development of physical systems’ models

in Simulink’s platform.

3.1 Modeling of the 2WD Robot

The TWSBR model simulation will be done based on the characteristics of the

commercial OSOYOO 2WD Balance Car Robot shown in Figure 7. The real robot’s

hardware is composed of an Arduino Uno controller, the wheels, stepper motors and motor

driver, the sensing unit, which is the MPU6050 gyroscope module, Bluetooth module for

smartphones connection, and other mechanical and electrical components [13]. Model

development will be done using 2 different controllers, with identical robot characteristics.

These characteristics include weight and dimensions of the cart and the chassis components

of the robot. These metrics were measured after robot disassembly.

Figure 6: OSYOO 2WD Balance Car Robot Kit [13]

3.1.1 Cart

22

The cart consisted of the right wheel left wheel and the shaft. The shaft is not included

in the assembly of the commercial robot as shown in Figure 7, it was included in the model

design for simplicity. Its size was modeled according to the distance between both wheels,

and the thickness was based on the motors’ dimensions, the weight was also set a matching

the weight of the motors and the brackets that connect the wheels to the chassis. Table 1

represents the geometry and mass of the modeled shaft.

Table 1: Shaft Geometry & Mass

Shaft Unit

Shape Brick

Dimensions [1.5, 1.5, 18] cm

Mass 345 g

The right and left wheels were modeled as wheel bodies and wheel tires, there

geometry and mass are also described in Table 2. These metrics apply symmetrically to both

left and right wheels.

Table 2 Left & Right Wheels Geometry & Mass

Left/Right Wheels Unit

 Wheel Body Wheel Tire

Shape Cylinder

Radius 2.36 3.2 cm

Length 2.57 2.6 cm

23

Mass 23.4 25.6 g

Figure 7: Cart's Model on Simulink

Figure 8: Shaft, Wheel Body and Wheel Tire Simscape Models

 Figure 8 shows the implemented the complete cart’s model on Simulink,

where the rigid transform is the block that enables the conversion of the wheel’s states tied

to the shaft. Figure 9 shows the separate models of the cart’s component as appearing in the

Simscape environment.

3.1.2 Chassis

The chassis part of the model is developed from 4 levels and the battery: bottom or

base level which is the heaviest since it is holding the rest of the layers, the controller level

holding the Arduino, the middle level which holds the battery and finally the top level over

24

the batteries. These levels are separated and held using screwdrivers. Model wise these levels

and the battery were developed using Bricks and held using rods. For simplicity the mass of

the controller and motor driver were included in the mass of the level considerably holding

the controller. Table 3 describes the geometry and mass of each of these levels. Table 4

describes the geometry mass and number per set of the rods separating and holding each

level, 3 sets of 4 rods each were needed in this model where 2 sets were of the same geometry

and mass. These 2 sets or pillars as shown in Figure 10 separated between middle and

controller levels and between middle and top levels.

Table 3: Geometry & Mass of the Chassis's Levels

Levels Unit

 Base Controller Middle Top Battery

Shape Brick

Dimensions [12.58,8.2,0.16] [8.22 6.19 1] [12.58,8.2,0.16] [12.58,8.2,0.16] [6,4,1.1] cm

Mass 107.8 69.6 63 63 105 g

Table 4: Rods Geometry Mass & Numbers

Rods Unit

 1st Set 2nd Set

Shape Cylinder

Radius/rod 0.5 0.5 cm

Length/ rod 4.4 2.3 cm

25

Mass/ rod 6.1 2.9 g

Number/Set 4 8 Rods

Figure 90: represents the chassis’s model implemented on Simulink

Figure 11 shows how the levels and rods are shaped in Simscape, since the base

middle and tope levels have the same dimensions, the middle and top levels’ figures weren’t

included for simplicity. The second level shown in figure 12 is the controller layer which is

thicker but lighter than the base level due to its smaller dimensions. The last radius in the last

rod appears bigger; however, according to Table 4 both have the same radius: 0.5 cm. this

difference is due to last rod’s shorter length.

Figure 10: Levels controller battery and rod's Simscape models

26

 Figure 12 represents the chassis’s model on Simulink. The levels are

connected and via the pillars. As reflected in figure 12 the base is connected through the

shorter pillars to the controller level and at the same time to the middle level which holds the

battery that are covered by the top level.

Figure 11: Simscape Robot's Model

3.2 Simulation: Common Blocks

After describing the model of the robot’s body, the basic and common blocks in the

robot’s plant, as shown in figure 13 in all controllers’ diagrams to be simulated will be

explained. But before that one must decide and discuss the model’s input output and control

signal which are almost common in all models. The goal is to control the robot’s

displacement and tilting angle by a control signal identical to the displacement force. The

control signal is introduced to the “f” pin in the prismatic joint which presents the

displacement input force, this signal i.e. the output of the controller is determined according

to the difference between the reference signal and the feedback from the sensing side, one of

it is from “p” the sensing output in the prismatic joint which gives information about the

lateral displacement. The prismatic joint is provided by world base connection to the World

Frame through “B”. It is described as the system’s rail which gives it the ability to move by

having the cart connected to its Frame “F” through a rigid transform. This joint is connected

through another rigid transform to the revolute joint. It gives the latter its base which in return

is translated to the chassis through the “F” pin. The revolute joint block includes a gyroscope

which enables angle sensing from “q”. Like “p”,” q” which is the feedback signal providing

27

information about the chassis’s angle. One last important common block is the scope that is

used to visualize and record the control effort to continuously maintain the robot’s

equilibrium, this control effort is identical to the displacement force that the controller

provides to correct and maintain the robot’s position.

3.3 Simulation: PID

Since PID controller is known to be a SISO system, 2 controllers will be introduced

in this model. First, the PID model’s input is divided between the 2 PID controllers as

presented in Figure 14. The input “reference for displacement” is a unit step function where

its value is set to 1 given that the robot must move this distance along the x axis and fed to

the PID displacement controller which provides the robot with the external force.” q” and

“p” sensor represent the feedback of PID controllers to produce the needed control action

“f”. In this way angle and displacement are controlled using the displacement force

commands according to the error signals (feedback from sensors-input signal) continuously

feeding the PID controllers.

Figure 12: Robot’s Plant

28

Figure 13: PID Controller

For performance evaluation the following metrics will be assessed: the rise time,

overshoot undershoot, settling time, steady state error, and control effort. The rise time is the

time needed to first cross the steady state. Overshoot correspond to the exceeded plant’s

performance and undershoot quantizes the still needed effort to reach steady state. Settling

time represents the time the system stabilizes with a constant steady state error. The steady

state error is the difference between the target state and the actual state as time goes to

infinity.

As a description to figure 15, the robot during the first 4.78 seconds, reached the

targeted 1 m distance but deviated from its equilibrium position by 3.24 degrees and during

stabilization attempt it redeviated by 0.78 degrees to then reach steady state which is 0

degrees at 15.8 s with a steady state error 0.15 %. For displacement after reaching the target

distance the robot walked an excessive distance of 0.23 meters and then returned to its steady

state at 23.2 s with a steady state error of 0.3%. Subsequently the control effort will be

29

typically as in figure 16, which translates the robot’s quick attempt to correct the angle

deviation at the start.

Figure 15: PID: Control Effort with respect to time

Figure 14: PID: Displacement and tilting angle responses in meter and degrees, respectively, in function of time in

seconds

30

3.4 Simulation: LQR

This model, as shown in figure 17, involves using state variables due to the

controller’s concept of operations. The state variables here included in addition to the

displacement, and angle, the velocity and angular velocity. Therefore, the prismatic joint will

output an additional signal: velocity labeled as “v” and the revolute joint will output the

angular velocity “w”. these metrics are determined using sensors in this model. It must be

mentioned that this model is a SIMO system, therefore one step input of a unity final value

is fed to the controller. This system consisted of feed forward and feedback controls. The

first is essential in reducing the impacts of the measured interruptions that in our case may

exist in displacement values, whereas the feedback control compensates for error in

measurements. The velocity angular displacement and angular velocity are carried to a

feedback system where they are multiplied by their tuned gains given by the “lqr” function

in the Matlab script. The matrix is then subtracted from the feedforward vector to produce

the control signal. The displacement variable was fed to the feedforward control since in this

project we are controlling the displacement. For this reason, the “p” value is subtracted from

the step signal and introduced to the feedforward control. Angle and displacement response

are evaluated since they are the assigned outputs and control effort is measured.

Figure 16: LQR block diagram

31

This performance of the LQR controller is governed by goals and constraints from

self-tunning. These include the margin goal, which enforces phase and gain values or

margins, and it is implemented by selecting the desired signal, which is in the feedback loop,

for measuring. The step tracking goal is also involved in self-tunning and from its name is

related to the step response. The purpose is to make the closed-loop step response match the

desired one. This is achieved by setting a certain time constant and the desired overshoot to

the values the user desire to achieve. The tracking goal includes following the step signal

commands with a certain preset performance. The pole goal involves constraining the

dynamics of the system by setting the region of the pole location. These self-tunning goals

are further described in figures 18 19 20 and 21

Figure 17: Margin Goal

32

Figure 18: Step Tracking Goal

33

Figure 19: Tracking goal

34

Figure 20: Poles Goal

The results are described in figures 22 and 23.

35

Figure 22 LQR: Control Effort with respect to time

3.5 Simulation: LQR with Minimum-Order Observer MOO

The LQR controller has shown a significant enhancement in performance in

comparison with the PID controller. However, it requires additional sensors which can be

computationally and cost-wise expensive to include in real life application or implementation

on the real robot. Therefore, the LQR controller was modified to be an MOO and was tested

Figure 21: LQR: Displacement and tilting angle responses in meter and degrees, respectively, in function of time in

seconds

36

on the model for performance assessment. The LQR with MOO will be further elaborated

after setting the inverted pendulum model involved in this work.

3.5.1 Inverted Pendulum Model

Figure 23: Inverted Pendulum Free Body Diagram [10]

Theoretically, the inverted pendulum consists of a mobile cart-rail system with a

swaying pole connected as shown in figure 24. It is usually modeled as a rigid pole fastened

to a rigid cart through a frictionless joint. At rest, the pole will fall, due to gravitational force.

The non-linear model of the inverted pendulum is given by the MathWorks tutorial [10],

where the equations are obtained by the Newton’s second law method separately first on the

cart’s during horizontal direction, where:

Ʃ𝐹⃗ = 𝑀𝑎⃗ (5)

 M𝑥̈+b𝑥̇+N=F (6)

 Adding the forces in the horizontal direction of the pendulum will yield following:

 N = m𝑥̈+ ml Ɵ̈cos θ- ml Ɵ̇2sin θ (7)

37

 Substituting (6) in (7) we get:

 (M + m)𝑥̈ + b𝑥̇- ml Ɵ̇2sin θ + ml Ɵ̈cos θ = F (8)

 For the equation of motion of the pendulum in the vertical direction, we get:

 PsinƟ+NcosƟ-mgsinƟ=mlƟ̈+ m𝑥̈cosƟ (9)

 To remove the P and N terms in the above equation, we can add the moments of

the pendulum’s centroid:

 -PlsinƟ-NlcosƟ=IƟ̈ (10)

 Combining (9) and (10), we get the following

 (I + 𝑚𝑙2) Ɵ̈ +mgl sin θ= - ml𝑥̈ cos θ (11)

 Where “I” is the mass moment of inertia of the pendulum; M and m are masses of

the cart and pendulum respectively; b is friction’s coefficient of the cart; l is the length to the

pendulum’s center of mass; F is the external force applied to the cart; x is the cart’s position;

theta Ɵ, the pendulum angular distance from the negative y-axis [10].

These sets of equations need to be linearized, since the control techniques apply to

linear systems only. Linearization will be done by setting the equilibrium position along the

positive y-axis where Ɵ= 𝜋, if the system will remain in this equilibrium with no more than

20 degrees deviation [10]. Therefore, Ɵ= 𝜋+Ø, where Ø equals 20 degrees. By assuming this

small deviation, we can set the following approximations:

 cosƟ=cos(𝜋+Ø) ≈ -1 (12)

 sinƟ=sin(𝜋+Ø) ≈ - Ø (13)

 Ɵ̇2=Ø̇2≈ 0 (14)

 By substituting the mentioned approximations, we obtained the following

linear equations:

 (I + 𝑚𝑙2) Ø̈ -mgl Ø= ml𝑥̈ (15)

 (M + m)𝑥̈ + b𝑥̇- ml Ø̈ = F (16)

 To get the linearized system equations’ transfer functions, the equations 15 &16

must be subjected to Laplace transform assuming zero initial conditions [10]. Since transfer

functions demonstrate the relationship between one single input single output, we will obtain

after calculations [10], two transfer functions, where the input in both is the external force

38

applied labeled as U, and the output is angular position labeled as ɸ, and the horizontal

position labeled as X in the first (17) and second transfer functions (19) as shown below [10].

ɸ(s)

𝑈(𝑠)
=

𝑚𝑙
𝑞 𝑠

𝑠3 +
𝑏(𝑙 + 𝑚𝑙2)

𝑞 𝑠2 −
𝑚𝑔𝑙(𝑀 + 𝑚)

𝑞 𝑠 −
𝑏𝑚𝑔𝑙

𝑞

 [
𝑟𝑎𝑑

𝑁
](17)

Where:

 q= [(M+m)(I+m𝑙2)-(𝑚𝑙)2] (18)

the second transfer function is represented by the cart’s position with respect to the

external force:

X(s)

𝑈(𝑠)
=

(𝐼 + 𝑚𝑙2)𝑠2 − 𝑔𝑚𝑙
𝑞

𝑠4 +
𝑏(𝑙 + 𝑚𝑙2)

𝑞 𝑠3 −
𝑚𝑔𝑙(𝑀 + 𝑚)

𝑞 𝑠2 −
𝑏𝑚𝑔𝑙

𝑞 𝑠
[
𝑚

𝑁
](19)

The above linearized equations (17) and (19), can also be expressed in state space

representation, where the system can be labelled as single input multiple output SIMO.

Therefore, in in this representation, one can attempt to control both the pendulum’s angle

and the cart’s position [10]:

[

𝑥̇
𝑥̈

Ø̇

Ø̈

] =

[

0 1 0 0

0
−(𝐼 + 𝑚𝑙2)𝑏

𝐼(𝑀 + 𝑚) + 𝑀𝑚𝑙2
𝑚2𝑔𝑙2

𝐼(𝑀 + 𝑚) + 𝑀𝑚𝑙2
0

0 0 0 1

0
−𝑚𝑙𝑏

𝐼(𝑀 + 𝑚) + 𝑀𝑚𝑙2
𝑚𝑔𝑙(𝑀 + 𝑚)

𝐼(𝑀 + 𝑚) + 𝑀𝑚𝑙2
0
]

[

𝑥
𝑥̇
Ø

Ø̇

] +

[

0
(𝐼 + 𝑚𝑙2)

𝐼(𝑀 + 𝑚) + 𝑀𝑚𝑙2

0
𝑚𝑙

𝐼(𝑀 + 𝑚) + 𝑀𝑚𝑙2]

𝑢

(16)

y=[
1 0 0 0
0 0 1 0

] [

𝑥
𝑥̇
Ø

Ø̇

]+[
0
0
] 𝑢

(20)

Robots total weight coefficient of friction b, length to chassis center of mass l and

mass moment of inertia I of the chassis are given in Table 5. I, l and m were calculated by

assuming that the chassis is presented as a rectangular prism as shown in figure 25. The

dimensions and mass of this prism are calculate based on the prior values previously

39

tabulated, were the mass, height, l and I are presented in the below equations, 21 22 23 and

24respectively:

 m=mass(layers)+mass(1st set of rods)+mass(batteries)+mass(2nd set of

rods)*2 (21)

 h= thck (base)+L (1st set of rods)+thck (middle layer)+L (2nd set of rods)+thck (top

layer) (22)

where thck is the thickness and L is the length

d and w are the length and the width of the top bottom or middle layer respectively.

 l=h/2 (23)

 I=
1

12
m(ℎ2+𝑑2) (24)

I was chosen according to our designated axis of rotation “x”

Figure 24: Rectangular prism mimicking the chassis [14]

Table 5: Robot's Characteristics

 Label Value Unit

Mass of the Cart M 0.55 Kg

Mass of the Chassis m 0.4696 Kg

Length to chassis center of mass l 3.59 cm

40

Coefficient of friction of the cart b 0.1 N/m/sec

Mass moment of inertia of the Chassis I 0.00046487 Kg.m^2

3.5.2 LQR with MOO

LQR controller can be classified into a system including an observer, which will be

discussed next, and into a system without observer represented in the above-mentioned

theory.

LQR with observer or full-state feedback system is demonstrated in Figure 26.

Figure 25: LQR (real plant) with Observer Design [12]

In the ideal LQR design it is assumed that all state variables are known to get the

feedback. However, this is not the case in many real existing and non-ideal systems, either

due to inability to ideally measure all state variables or due the sensors’ cost [12]. In systems

including observer, it will be shown how all state variables are calculated using one or few

measured states: this case is called Minimum-Order Observer [12]. State estimation can be

41

calculated according to the below equation which can be acquired by looking at the observer

plant in Figure 26 excluding till now the signal coming from F:

 𝑥̇̂ = 𝐴𝑥̂+By (25)

Where 𝑥̂ is the estimated true state: x. This observer will properly operate if the initial

condition x (0) is known, which will enable setting 𝑥̂(0) equal to it. In real cases the initial

condition is rarely well known, which will lead the error expressed in (26) to converge too

slowly to zero.

 𝑥̃=x-𝑥̂ (26)

Hence,

 𝑥̇̃=A𝑥̃ or 𝑥̃(0) =x (0)-𝑥̂(0) (27)

 The velocity of the error as it converges to zero is identical to the dynamics

of A, but its convergence to zero velocity can never meet the true state. To achieve faster

convergence, F feedback is introduced as seen in Figure 26, which corrects the model by an

added signal using the multiplied or amplified state(s) error value. By looking now at Figure

26, we can infer the following equation:

 𝑥̇̂ = 𝐴𝑥̂+By+F(u-C𝑥̂) Or 𝑥̇̂ = (𝐴 − 𝐹𝐶)𝑥̂+By+Fu (28)

 𝑥̇̂ will be known as “ethatilda”, and A-FC will be known as the Â, B will be

B̂. F calculation design or tunning will be done in the same manner as finding K, either by

manual pole placement with coefficient comparison or with LQR method.

Figure 26: LQR MOO block diagram

42

Figure 27: MOO block diagram

 Transformation block is translated into:

𝑥̃ = Ĉ𝑥̂+D̂y (29)

Figure 27 represents the LQR with MOO block diagram followed by the MOO

subsystem, where its output, “xtilda” represents the estimated states. The performance of this

controller was also governed by the same constraints and goals as in figures 18 19 20 and 21.

The results of this controller are shown in figures 29 and 30.

Figure 2928 :LQR MOO: Displacement and tilting angle responses in meter and

degrees, respectively, in function of time in seconds

43

Figure30: LQR MOO: Control Effort with respect to time

44

CHAPTER 4

COMPARISON AND DISCUSSION

Comparison and discussion will be done between the 3 controllers in terms, of control

metrics and performances for the displacement, angle, and control effort responses.

4.1 Displacement

First, Figure 31, shown the displacement response for each controller overlayed on

the same graph, along with Table 6 to explicitly highlight the difference.

Figure 29: Displacement response with respect to time for PID (yellow), LQR (red) & LQR

with MOO (blue)

Table 6: Displacement: Control metrics for PID LQR & LQR with MOO

Displacement PID LQR LQR with MOO

Rise Time 4.78 s 3.85 s 3.78 s

Settling Time 23.2 s 10.65 s 17.7 s

45

Overshoot 1.23 m 1.038 m 1.18 m

Undershoot - 0.9984 m 0.96 m

Steady State Error 0.3 % 0 % 0.1%

From figure 31, one can directly tell that the PID response was the slower first in

terms of rise and settling times, in addition to the high overshoot which is visually clear.

From the above snip alone, one cannot determine the steady state error however from figure

15 the steady state error was calculated and found to be 0.3 % as tabulated. There was no

significant undershoot in the PID response. On the other hand, LQR response was faster in

terms of settling time with no steady state error and very low overshoot and undershoot,

however it may have taken a slightly more rise time than LQR with MOO. The shortest rise

time in LQR with MOO was followed by a higher overshoot and under shoot and a longer

settling time with a higher steady state error when compared to LQR alone. However, when

compared to PID the displacement response in LQR with MOO was more stable.

4.2 Angle

Figure 32 shows the tilting angle response for the 3 controllers also recorded from

the same scope, along with the control metric as in Table 7.

46

Figure 30: Angular response with respect to time for PID (yellow), LQR (red) & LQR with

MOO (blue)

Table 7 Angle: Control metrics for PID LQR & LQR with MOO

Angular Displacement PID LQR LQR with MOO

Rise Time 0 1.34 s 2.168 s

Settling Time 15.8 s 12.13 s 11.33 s

Overshoot 3.24 degrees 0.027 degrees 0.017 degrees

Undershoot -0.78 degrees -0.001122 degrees -0.0033

Steady State Error 0.15 % ≈0 % ≈0 %

Visually, PID angular response was the poorest, due to the significant very high

overshoot and undershoot, and the longest settling time. Comparing between the 2 versions

of LQR, the performance was somehow close. The LQR rise time and undershoot were less

47

than LQR with MOO, however, the latter took a slightly less time to settle and made a slightly

less overshoot.

4.3 Control Effort

The control effort is the reflection of the above-mentioned performances which will

also be presented in an overlay of control effort responses as in figure 33, and in Table 8

which recorded the control effort range between 0 and 0.2 seconds.

Figure 31: Control effort with respect to time for PID (yellow), LQR (red) & LQR with

MOO (blue)

Table 8: Control Effort for PID LQR & LQR with MOO

 PID LQR LQR with MOO

Control Effort [2.66, -9.3] [0.6, -1] [0.25, -2.25]

The PID high angular overshoot was corrected by applying a higher control effort as

shown in Figure 33 and in table 8, the response remained fluctuating which translates an

unstable system. The LQR controller very good performance was reflected by having the

shortest dynamic range the LQR with MOO’s dynamic range was longer than LQR, this is

due to the corrections that were needed to in this controller to stabilize the system at the start.

48

As shown in figure 33, the control effort for the LQR stabilized before that of PID and MOO.

PID’s control effort remained fluctuating, and MOO took the longest time in stabilizing the

system (without fluctuation).

49

CHAPTER 5

CONCLUSION AND FUTURE PERSPECTIVES

 4.1 Conclusion

After exhibiting the results of the PID and the LQR controllers on the OSOYOO

2WD self-balancing robot, we further simulated the model on the LQR MOO controller

which requires a smaller number of states and is less expensive. The results of these 3 models

showed that the LQR yielded the most promising results due to the access on all states and

the presence of the feed forward and the feedback controls which further reduced the error,

also the application of goals and constraints via the self-tuner played an important role. One

drawback of the LQR controller is its high cost, due to the need of placing a lot of sensors to

access all states. LQR with MOO solved the cost issue however it didn’t outperform LQR

since not all states are measured and therefore the estimation of the rest will not yield same

performance quality. This is shown in the higher control effort that was need in LQR MOO,

and the longer displacement settling time. This will lead us to a conclusion that LQR

outperforms PID, and that LQR controller was the best in stabilizing the system in the least

amount of time and with the least control effort among LQR with MOO and PID. The greater

conclusion is that one cannot obtain an optimal controller that best performs with the least

effort and cost. User must compromise based on his application and choose what to penalize:

performance cost or effort.

4.2 Future Perspectives

For future work, real implementation of the documented controllers will be done on

the real robot, and result comparison like the one done in this project will be done and both

results empirical and real will be compared.

50

APPENDIX

Non-Observer Matlab Code

M = 0.55;
m = 0.29;
b = 0.1;
I = 0.00267;
g = 9.8;
l = 0.053;

p = I*(M+m)+M*m*l^2; %denominator for the A and B matrices
%http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§i

on=ControlStateSpace
A = [0 1 0 0;
 0 -(I+m*l^2)*b/p (m^2*g*l^2)/p 0;
 0 0 0 1;
 0 -(m*l*b)/p m*g*l*(M+m)/p 0];
B = [0;
 (I+m*l^2)/p;
 0;
 m*l/p];
C = [1 0 0 0;
 0 0 1 0];
D = [0;
 0];

states = {'x' 'x_dot' 'phi' 'phi_dot'};
inputs = {'u'};
outputs = {'x'; 'phi'};

sys_ss = ss(A,B,C,D,'statename',states,'inputname',inputs,'outputname',outputs);

poles = eig(A)

co = ctrb(sys_ss);
controllability = rank(co)

Q = C'*C;
 Q(1,1) = 1;
 Q(3,3) = 1;
R = 1;
K = lqr(A,B,Q,R);

51

Minimum-Order Observer Matlab Code

M = 0.55;
m = 0.29;
b = 0.1;
I = 0.00267;
g = 9.8;
l = 0.053;

p = I*(M+m)+M*m*l^2; %denominator for the A and B matrices
%http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§i

on=ControlStateSpace
A = [0 1 0 0;
 0 -(I+m*l^2)*b/p (m^2*g*l^2)/p 0;
 0 0 0 1;
 0 -(m*l*b)/p m*g*l*(M+m)/p 0];
B = [0;
 (I+m*l^2)/p;
 0;
 m*l/p];
C = [1 0 0 0;
 0 0 1 0];
D = [0;
 0];

states = {'x' 'x_dot' 'phi' 'phi_dot'};
inputs = {'u'};
outputs = {'x'; 'phi'};

sys_ss = ss(A,B,C,D,'statename',states,'inputname',inputs,'outputname',outputs);

poles = eig(A)
co = ctrb(sys_ss);
controllability = rank(co)
ob = obsv(sys_ss);
observability = rank(ob)
Q = C'*C;
 Q(1,1) = 1;
 Q(3,3) = 1;
R = 1;
K = lqr(A,B,Q,R);
Cnew=[C(:,1) C(:,3) C(:,2) C(:,4)];

Bnew=[B(1,:);B(3,:);B(2,:);B(4,:)];

 Anewi=[A(1,:);A(3,:);A(2,:);A(4,:)];
 Anewf=[Anewi(:,1) Anewi(:,3) Anewi(:,2) Anewi(:,4)];

52

 Knew=[K(:,1) K(:,3) K(:,2) K(:,4)];

 Jomin=[-40 -40];

Aaa=Anewf(1:2,1:2);
Aab=Anewf(1:2,3:4);
Aba=Anewf(3:4,1:2);
Abb=Anewf(3:4,3:4);
Ba=Bnew(1:2,:);
Bb=Bnew(3:4,:);

Ka=Knew(:,1:2);
Kb=Knew(:,3:4);
%check minimum observability
rank(obsv(Abb,Aab));

Lmin=place(Abb',Aab',Jomin)'

Ahat=Abb-Lmin*Aab;
Bhat=(Ahat*Lmin)+(Aba-Lmin*Aaa);
%note: in simulink what implemented is:(Aba-Lmin*Aaa);

Fhat=Bb-Lmin*Ba;

Chat=[zeros(2,2);eye(2)];
Dhat=[eye(2);Lmin];

Atild=Ahat-Fhat*Kb;
eig(Atild)
eig(A-B*K)
eig(Abb'-Aab'*Lmin')

53

REFERENCES

[1] J. Fang, "The LQR Controller Design of Two-Wheeled Self-Balancing Robot Based

on the Particle Swarm Optimization Algorithm," Hindawi Publishing Corporation

Mathematical Problems in Engineering, vol. 2014, pp. 1-7, 2014.

[2] F. R. Jiménez, I. A. Ruge and A. F. Jiménez, "Modeling and Control of a Two

Wheeled Auto-Balancing Robot: a didactic platform for control engineering

education," in 18th LACCEI International Multi-Conference for Engineering,

Education, and Technology: “Engineering, Integration, and Alliances for a

Sustainable Development” “Hemispheric Cooperation for Competitiveness and

Prosperity on a Knowledge-Based Economy”., 2020.

[3] W. An and Y. Li, "Simulation and Control of a Two-wheeled Self-balancing Robot,"

in International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, 2013.

[4] C. C. SAMAK and T. V. SAMAK, "DESIGN OF A TWO-WHEEL SELF-

BALANCING ROBOT WITH THE IMPLEMENTATION OF A NOVEL STATE

FEEDBACK FOR PID CONTROLLER USING ON-BOARD STATE ESTIMATION

ALGORITHM," International Journal of Robotics Research and Development

(IJRRD) , vol. 8, no. 2, pp. 1-11, 2018.

[5] A. A. Bature1, S. Buyamin, M. N. Ahmad and M. Muhammad, "A Comparison of

Controllers for Balancing Two Wheeled Inverted Pendulum Robot," International

Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, vol. 14, no. 3,

pp. 1-7, 2014.

[6] M. M. Rahman , S. H. Rashid, K. R. Hassan and M. Hossain, "Comparison of

Different Control Theories on a Two Wheeled Self Balancing Robot," in AIP

Conference Proceedings 1980, 060005, 2018.

[7] L. M. M. Thwin and Y. Chan, "APPLICATION OF LQR CONTROL FOR TWO-

WHEEL SELF-BALANCING ROBOT," J. Myanmar Acad. Arts Sci, vol. XVIII, no.

2C, pp. 263-272, 2020.

[8] S. Patil, D. Bhavsar, S. Mantri and S. Gosavi, "Self Balancing Robot," International

Journal of Engineering Research & Technology (IJERT), vol. 9, no. 3, pp. 249-252,

2021.

54

[9] H. HANNA and S. HENRIK, Two-Wheeled Self-Balancing Robot, Stockholm, 2015.

[10

]

https://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§ion

=SystemModeling, "Inverted Pendulum: System Modeling," Matlab.

[11

]

https://www.omega.co.uk/prodinfo/how-does-a-pid-controller-work.html.

[12

]

R. B¨uchi, State Space Control, LQR and Observer step by step introduction, with

Matlab examples, Norderstedt: Herstellung und Verlag: Books on Demand GmbH,

2010.

[13

]

https://osoyoo.com/2018/08/01/introduction-of-osoyoo-2wd-balancing-car-robot/.

[14

]

J. Moore, M. Chatsaz, A. d'Entremont, J. Kowalski and D. Miller, "Center of Mass

and Mass Moments of Inertia for Homogeneous Bodies".

