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ABSTRACT 

 

 

This project represents the work done to model and simulate a two-wheeled self-

balancing robot TWSBR using Proportional-integral-derivative (PID) and Linear-quadratic 

regulator (LQR). These robots are commercially present, yet they still attract several control 

enthusiasts to study their stability, using different algorithms, due to their sustainable design 

and advantages. In this book, the commercial OSOYOO TWSBR is modeled on Matlab 

Simscape, and simulated using PID and LQR controllers on Matlab Simulink. The goal of 

the controllers is to monitor and maintain the robot’s tilting angle and position using its 

displacement force. After modeling and tunning, the controllers’ outcomes are evaluated and 

compared using the control system evaluation parameters and control effort. LQR yielded 

the most promising results; however, it required more sensors to access the robot’s states. 

Therefore, the LQR with minimum order observer controller is developed for sensors’ cost 

reduction. The latter competed with LQR but was less stable and took longer time to reach 

steady state. For future work the goal is to control the real robot using these 3 different 

controllers and compare their results. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background Information 

When talking about control systems, we are talking about autonomous robots, self-

driving cars, drones, transportation means, heavy industries, home appliances, medical 

devices, cell phones, computers etc.  The control theory has been changing lives since the 

beginning of time, and it is considered as a solution for various complex and dynamic systems 

including self-balancing robots. One of the most important and considerable milestones in 

the robotics field’s history is the invention of self-balancing robots. Since the 1980s, these 

robots attracted researchers, from different countries, to study their systems [1]. Despite their 

non-linearity instability and complex yet broad control systems, self-balancing robots have 

found their application in multiple fields due to their sustainable design. These fields include 

military or civilian self-transport alternatives or assistants, dangerous and normal 

workplaces, research, and testing of various applicable control algorithms [1,2]. What is in 

common between all these self-balancing robot operators, is that they are all based on the 

inverted pendulum theory. The TWSBR combines the inverted pendulum theory with two 

wheeled robot and the dynamics control. Self-balancing robots existed in the market during 

the past two decades, starting from the famous Segway, as shown in Figure 1, which is 

independently controlled [3]. The LegWay robot, as shown in figure 2, from Lego company 

was also designed to move on irregular or inclined surfaces but using remote control 

operation [3]. Other self-balancing robot Balanduino, as shown in figure 3 which is open 

source, and other robots developed by researchers [4].  In addition to their considerable price, 

these robots are eco-friendly since they are electrically powered, and time and space efficient 

due to their small size and extra flexibility. However, each of these robots, whether 

commercially present or built by robotics enthusiasts, is built using a unique control 

algorithm, PID and LQR, Fuzzy Logic Controller (FLC), etc. And in research testing the 
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control theory applied on such robots is done via simulation prior any code implementation 

on the microcontroller. This is due to the time cost and risk that simulation saves during 

multiple parameters tuning and results variation. 

1.2 Motivation 

Controlling TWSBRs is a newly and continuously evolving field. These types of 

robots are proved to be sustainable in terms of design and environmental effect. In addition, 

few researchers worked on simulating different control algorithms on a moving self-

balancing robot and then compare the results and decide on the appropriate control method. 

For the robot’s model little to no work involved modeling OSOYOO 2WD Balance Car 

Robot, on MATLAB Simscape, and implement it as a plant in these different control systems.  

 

Figure 1:  Segway Self Balancing Human Transporter 

 
Figure 1:  Balanduino 
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Figure 2: Legway 
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CHAPTER 2 

LITERATURE REVIEW 

 
2.1 Principle of Inverted Pendulum 

TWSBR is based on the fundamental of an inverted pendulum, where the wheels are 

simplified as a cart on wheels and the robot’s chassis is compared to the pole, as represented 

in Figure 4. In this section the dynamics of the inverted pendulum will be discussed.  

 

Figure 3: TWSBR: Simplified [9] 

Other than TWSBRs, the inverted pendulum concept has plenty applications like 

human walking robots, earthquake resistant building design and missile launchers [7]. The 

widest and most common example of an inverted pendulum is the human being.  The inverted 

pendulum as shown in Figure 4 is a non-linear dynamic system, and despite its complexity, 

many researchers have worked on developing and enhancing its control system.  

2.2 Previous Work 

Previous work to be reviewed in this project fall in the scope of simulating single or 

multiple control methods on a TWSBR and compare the results if applicable. The work cited 

will be listed and described according to their ascending dates.  

In this work two control systems are involved in maintaining robot’s balance: PID 

and LQR. These methods are implemented to control two subsystems: self-balance, during 

motion, and yaw rotation, which involves regulating steering angle during turning. It must 

be mentioned that PID was applied to both subsystems and LQR for self-balancing only. 

After simulation, the two methods were compared, and it was found that the LQR 
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outperformed PID. PID involved using single feedback signal, either tilt angle or tilt angle 

rate from accelerometer or gyroscopes, for control value generation. LQR had the advantage 

of combining all output state variables including tilt angle rate, tilt angle and position to get 

the control value. This usually allows the system to achieve stabilization in the desired time 

even if one variable was inaccurate. For this reason, LQR achieved the steady state faster 

than PID [3]. 

When comparing controllers in this work, researcher included, in addition to the LQR 

and PID controllers, the FLC. These controllers were implemented on a two-wheeled 

inverted pendulum mobile robot. After experiments it was found that the FLC outperformed 

LQR and PID by having a less overshoot and faster response; however, it consumed higher 

energy.  And comparing LQR and PID alone both methods took the same rise time and 

energy; however, LQR showed a faster response and less overshoot than PID [5].  

Rahman et al. also compared LQR PID and FLC on a TWSBR using Robot Operating 

System ROS and Gazebo. It was found that when plotting real time pitch angles with respect 

to time, PID gave the most stable performance, however faster response was recorded with 

LQR. On the other hand, the FLC was the most non-stable, due to its inefficient tuning [6].  

This work involved the design development and analysis of TWSBR using a novel 

control method involving PID. In most common controllers and feedback systems, state 

estimation is done via the Inertial measurement unit IMU, which includes motion measuring 

sensors, and feedback is received from the actuator using tachometers or encoders. This work 

is based on generating the feedback after an on-board state estimation algorithm, by that 

eliminating the need of actuators. This robot demonstrated robust performance by taking a 

very fast response to correct any disturbances from equilibrium. The controller gains played 

an important role in reaching stability with minute undesirable errors, where they were 

adjusted according to the robot’s height and mass distribution. In addition to the gains, 

moment of inertia, motor and IMU parameters proved to affect the conserving stability. It 

must be noted that choosing precise sensors and actuators could highly eliminate 

imperfections in stability [4]. 

Another work involved experimental comparison between the conventional PID 

controller and the optimal LQR controller. These controllers were simulated using the 
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MATLAB/Simulink platform and then were digitally implemented on the TWSBR. The aim 

was to maintain the robot in vertically balanced despite disturbances. Comparison was done 

on the level of stabilization adequate dynamic response and control robustness. Results 

showed that LQR is simpler since it requires 2 gains for control; however, the PID needs 

computational calculation. Both controllers meet the specification: setting time less than 200 

ms and robot’s vertical posture less than 5 degrees tilt. On the other hand, the PID had the 

overshoot issue due to its high integral side gain, but with smaller steady state error. LQR 

had a better transient response minimizing overshoots and compensating steady state error, 

making the reaction to body falling and imbalances faster and smoother. This makes the 

general LQR controller practice better than PID controller [2]. 

Thwin et al., applied the LQR algorithm into the TWSBR system, and they stated that 

LQR is an automatic method of getting the optimal state-feedback controller. In this work 

the system’s full state information regarding the cart’s position and velocity are received 

from a dc motor encoder, and the pendulum’s angular position and velocity are attained from 

an IMU sensor. The pitch angle was determined using a complimentary filter that assessed 

the gyroscope and accelerometer signals. The robot was implemented sing the Arduino Mega 

controller, which can be compatible with MathWorks and Simulink (using the Rensselaer 

Arduino Support Package). They concluded that Q and R values must be carefully tuned due 

to their sensitive effect on the control system, and that sensors must be carefully selected, 

and their signals must be filtered and conditioned to remove any noise affecting the control’s 

performance [7].  

Another most recent work about TWSBR was done to apply control methods on the 

robot so it can self-balance. This system utilized signals from an accelerometer and 

gyroscope and send them to the microcontroller and in parallel the latter gives rotation 

instructions to the motor drive of the wheel so that the TWSBR can self-balance. As cited by 

Patil et al. this system better describes an optimal robot able to make sharp and fast turns and 

navigate in tight areas, which will be helpful in plenty of applications. Controlling this system 

is done via PID tuning, and its implementation is done on the ATEGA-328P microcontroller. 

The robot was able to effectively balance itself during forward and backward leaning; 
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however, its performance can be enhanced by improving the motor speed readings’ precision, 

hence enhancing stability [8].   

2.3 Purpose 

This project will be based on modeling the self-balancing car “OSOYOO 2WD” 

model built and simulated on Matlab Simscape. This model will be simulated using different 

control algorithms the PID and LQR to ensure system stability. The robot must travel and 

reach a certain distance while maintaining the tilting angle the closest to zero in the least 

amount of time and with the least control effort. The output responses, settling time, 

overshoot control effort and other metrics will be assessed and compared among the 2 

simulation models. Based on this assessment the most optimal model will be chosen for 

future real implementation on the robot’s kit. According to literature review, still no similar 

work involved using this model. This work will add a great value to the huge field of 

controlling TWSBRs which outperform normal robots due to their sustainable architecture.  

2.4 PID 

A Proportional P, Derivative D and Integral I control technique is one of the most 

known feedback mechanisms used in control plants. Briefly the purpose of this controller is 

to forcefully match the feedback to a setpoint, in other words to set the angular position of 

the pendulum, which is continuously acquired, to 𝜋. PID systems as well are known as SISO 

Single Input Single Output systems. The three adjustments in PID aid the plant in 

compensating system changes. It must be noted that PID controllers provide their best 

performance when included in light-weight systems. It is also suggested for an often load 

and setpoints varying structures. The three working pillars in PID control must be 

individually modified or tuned to trigger the adjustment factor [11].  

As shown in Figure 5, Without any of the PID pillars, the plant will work on 

processing the input and executing an output, which in non-linear systems will be different 

by a quantity called steady state error. To match the output to the set or required goal, a 

controller must be introduced. In case of PID, when introducing the first term which is “P”, 

the controller will work on multiplying the given error at any time t with a certain constant 

or gain Kp. This, in some systems will help in matching the output to the set point faster, 
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until the difference becomes null. For this reason, the proportional part is called to be used 

for error elimination [3]. Some system will require an additional term since P alone can 

sometimes never nullify the steady state error. In this case one can refer to the integrator 

term, which accordingly will sum the input over time, which will make it the memory of the 

system. When the steady state error in non-zero the value will be integrated pushing the 

output to reach the setpoint. In some systems the PI alone can lead to overshoot due to the 

non-ideal approach it gives, therefore, to predict the future overshoot, the derivative term 

will be needed to measure the rate of error or how fast the error is increasing or decreasing. 

If the error is decreasing as we are starting to reach the set point, the derivative will output a 

negative term which will be summed to the rest of the terms and therefore reducing the 

control signal to prevent overshoot. Explaining the theory behind PID makes it easy; 

however, gains must be carefully tunned, and one must compromise based on the application.  

 
Figure 4: PID controller 

2.5 LQR 

Linear quadratic regulator controller is another advanced type which is based on 

using state space systems as shown in equations (1) and (2) and represented in Figure 6. 

𝑥̇(𝑡) =Ax(t)+Bu(t) (1) 

 y(t)=Cx(t)+Du(t) (2) 

Where 𝑥(𝑡)̇  is the state vector, which varies according to the variable states in the 

system x(t) and any external input u(t), this relationship is governed by the matrix A, which 

describes how the internal states are connected to each other’s. The variable states in the 

system are described by the minimum set of variables needed to fully describe the system 

and predict future behavior. B is also a matrix which describes how the input enter to the 

system and which state is it affecting.  
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The y(t) vector is the output of the system and in other words it is the part the user is 

interested to know. C matrix describes how the states are connected to produce the output 

and D acts as standard gain multiplied to the input.  

 

Figure 5: State Space Model Describing the Dynamic System's State-modified [9] 

LQR is called the optimal control technique when compared to the pole placement 

technique. Briefly the pole placement technique involves manually choosing 2 gains: the 

state vector gain and the scaled reference gain (as a pre-compensator for the steady state 

error), as shown in Figure 5 “K and Kr”, to move the system into stability by having the 

poles, which are identical to the eigen values of A matrix, on the left axis side. LQR involves 

providing optimal gains to reduce the general cost function as in equation 3, and to increase 

performance with minimum effort.   

    J=∫ [
∞

0
𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢]𝑑𝑡  (3) 

And according to Figure 6: 

    u=rkr -Kx   (4) 

Where J is the cost, which is always a scalar value, x is the state variable, u is the 

input and t is the time. Q and R determine the weights which heavily influence the cost. Q is 

a matrix that through it we can choose what variable to penalize, and R is a real constant 

number.  

After setting the state variables of the system, the user can start adjusting the Q and 

R values based on the design. The optimal gain or the K matrix can be computed numerically 

on Matlab according to the “lqr” function, the response can be simulated, and re-adjustments 
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can be made. In pole placement the user manually places the poles by adjusting the K values; 

however, in LQR Q and R are tuned accordingly. 
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CHAPTER 3 

SIMULATION 

Simulation in this project is done on 2 different models on the Matlab Simscape 

environment. Technically, Simscape enables fast development of physical systems’ models 

in Simulink’s platform.  

3.1 Modeling of the 2WD Robot  

The TWSBR model simulation will be done based on the characteristics of the 

commercial OSOYOO 2WD Balance Car Robot shown in Figure 7. The real robot’s 

hardware is composed of an Arduino Uno controller, the wheels, stepper motors and motor 

driver, the sensing unit, which is the MPU6050 gyroscope module, Bluetooth module for 

smartphones connection, and other mechanical and electrical components [13]. Model 

development will be done using 2 different controllers, with identical robot characteristics. 

These characteristics include weight and dimensions of the cart and the chassis components 

of the robot. These metrics were measured after robot disassembly. 

 

Figure 6: OSYOO 2WD Balance Car Robot Kit [13] 

3.1.1 Cart 
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The cart consisted of the right wheel left wheel and the shaft. The shaft is not included 

in the assembly of the commercial robot as shown in Figure 7, it was included in the model 

design for simplicity. Its size was modeled according to the distance between both wheels, 

and the thickness was based on the motors’ dimensions, the weight was also set a matching 

the weight of the motors and the brackets that connect the wheels to the chassis. Table 1 

represents the geometry and mass of the modeled shaft. 

Table 1: Shaft Geometry & Mass 

Shaft Unit 

Shape  Brick   

Dimensions  [1.5, 1.5, 18]   cm 

Mass  345  g 

 

The right and left wheels were modeled as wheel bodies and wheel tires, there 

geometry and mass are also described in Table 2. These metrics apply symmetrically to both 

left and right wheels.  

Table 2 Left & Right Wheels Geometry & Mass 

Left/Right Wheels Unit 

 Wheel Body  Wheel Tire  

Shape Cylinder  

Radius 2.36 3.2 cm 

Length  2.57 2.6 cm 
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Mass 23.4 25.6 g 

 
Figure 7: Cart's Model on Simulink 

 
Figure 8: Shaft, Wheel Body and Wheel Tire Simscape Models 

 Figure 8 shows the implemented the complete cart’s model on Simulink, 

where the rigid transform is the block that enables the conversion of the wheel’s states tied 

to the shaft. Figure 9 shows the separate models of the cart’s component as appearing in the 

Simscape environment.  

3.1.2 Chassis 

The chassis part of the model is developed from 4 levels and the battery: bottom or 

base level which is the heaviest since it is holding the rest of the layers, the controller level 

holding the Arduino, the middle level which holds the battery and finally the top level over 
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the batteries. These levels are separated and held using screwdrivers. Model wise these levels 

and the battery were developed using Bricks and held using rods. For simplicity the mass of 

the controller and motor driver were included in the mass of the level considerably holding 

the controller. Table 3 describes the geometry and mass of each of these levels. Table 4 

describes the geometry mass and number per set of the rods separating and holding each 

level, 3 sets of 4 rods each were needed in this model where 2 sets were of the same geometry 

and mass. These 2 sets or pillars as shown in Figure 10 separated between middle and 

controller levels and between middle and top levels.  

Table 3: Geometry & Mass of the Chassis's Levels 

Levels  Unit 

 Base Controller Middle Top  Battery   

Shape  Brick  

Dimensions [12.58,8.2,0.16] [8.22 6.19 1] [12.58,8.2,0.16] [12.58,8.2,0.16] [6,4,1.1] cm 

Mass 107.8 69.6 63 63 105 g  

Table 4: Rods Geometry Mass & Numbers 

Rods Unit 

 1st Set 2nd Set  

Shape Cylinder  

Radius/rod  0.5 0.5 cm 

Length/ rod 4.4 2.3 cm 
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Mass/ rod 6.1 2.9 g 

Number/Set 4 8 Rods 

 

 

Figure 90: represents the chassis’s model implemented on Simulink 

Figure 11 shows how the levels and rods are shaped in Simscape, since the base 

middle and tope levels have the same dimensions, the middle and top levels’ figures weren’t 

included for simplicity. The second level shown in figure 12 is the controller layer which is 

thicker but lighter than the base level due to its smaller dimensions. The last radius in the last 

rod appears bigger; however, according to Table 4 both have the same radius: 0.5 cm. this 

difference is due to last rod’s shorter length.  

 

Figure 10: Levels controller battery and rod's Simscape models 
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 Figure 12 represents the chassis’s model on Simulink. The levels are 

connected and via the pillars. As reflected in figure 12 the base is connected through the 

shorter pillars to the controller level and at the same time to the middle level which holds the 

battery that are covered by the top level. 

   

Figure 11: Simscape Robot's Model   

 

3.2 Simulation: Common Blocks 

After describing the model of the robot’s body, the basic and common blocks in the 

robot’s plant, as shown in figure 13 in all controllers’ diagrams to be simulated will be 

explained. But before that one must decide and discuss the model’s input output and control 

signal which are almost common in all models. The goal is to control the robot’s 

displacement and tilting angle by a control signal identical to the displacement force. The 

control signal is introduced to the “f” pin in the prismatic joint which presents the 

displacement input force, this signal i.e. the output of the controller is determined according 

to the difference between the reference signal and the feedback from the sensing side, one of 

it is from “p” the sensing output in the prismatic joint which gives information about the 

lateral displacement. The prismatic joint is provided by world base connection to the World 

Frame through “B”. It is described as the system’s rail which gives it the ability to move by 

having the cart connected to its Frame “F” through a rigid transform. This joint is connected 

through another rigid transform to the revolute joint. It gives the latter its base which in return 

is translated to the chassis through the “F” pin. The revolute joint block includes a gyroscope 

which enables angle sensing from “q”. Like “p”,” q” which is the feedback signal providing 
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information about the chassis’s angle. One last important common block is the scope that is 

used to visualize and record the control effort to continuously maintain the robot’s 

equilibrium, this control effort is identical to the displacement force that the controller 

provides to correct and maintain the robot’s position.  

3.3 Simulation: PID 

Since PID controller is known to be a SISO system, 2 controllers will be introduced 

in this model. First, the PID model’s input is divided between the 2 PID controllers as 

presented in Figure 14. The input “reference for displacement” is a unit step function where 

its value is set to 1 given that the robot must move this distance along the x axis and fed to 

the PID displacement controller which provides the robot with the external force.” q” and 

“p” sensor represent the feedback of PID controllers to produce the needed control action 

“f”. In this way angle and displacement are controlled using the displacement force 

commands according to the error signals (feedback from sensors-input signal) continuously 

feeding the PID controllers.  

 
Figure 12: Robot’s Plant  
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Figure 13: PID Controller 

For performance evaluation the following metrics will be assessed: the rise time, 

overshoot undershoot, settling time, steady state error, and control effort. The rise time is the 

time needed to first cross the steady state. Overshoot correspond to the exceeded plant’s 

performance and undershoot quantizes the still needed effort to reach steady state. Settling 

time represents the time the system stabilizes with a constant steady state error. The steady 

state error is the difference between the target state and the actual state as time goes to 

infinity.  

As a description to figure 15, the robot during the first 4.78 seconds, reached the 

targeted 1 m distance but deviated from its equilibrium position by 3.24 degrees and during 

stabilization attempt it redeviated by 0.78 degrees to then reach steady state which is 0 

degrees at 15.8 s with a steady state error 0.15 %. For displacement after reaching the target 

distance the robot walked an excessive distance of 0.23 meters and then returned to its steady 

state at 23.2 s with a steady state error of 0.3%. Subsequently the control effort will be 
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typically as in figure 16, which translates the robot’s quick attempt to correct the angle 

deviation at the start.  

 
Figure 15:  PID:  Control Effort with respect to time 

 

Figure 14:  PID: Displacement and tilting angle responses in meter and degrees, respectively, in function of time in 

seconds 
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3.4 Simulation: LQR  

This model, as shown in figure 17, involves using state variables due to the 

controller’s concept of operations. The state variables here included in addition to the 

displacement, and angle, the velocity and angular velocity. Therefore, the prismatic joint will 

output an additional signal: velocity labeled as “v” and the revolute joint will output the 

angular velocity “w”.  these metrics are determined using sensors in this model. It must be 

mentioned that this model is a SIMO system, therefore one step input of a unity final value 

is fed to the controller. This system consisted of feed forward and feedback controls. The 

first is essential in reducing the impacts of the measured interruptions that in our case may 

exist in displacement values, whereas the feedback control compensates for error in 

measurements. The velocity angular displacement and angular velocity are carried to a 

feedback system where they are multiplied by their tuned gains given by the “lqr” function 

in the Matlab script. The matrix is then subtracted from the feedforward vector to produce 

the control signal. The displacement variable was fed to the feedforward control since in this 

project we are controlling the displacement. For this reason, the “p” value is subtracted from 

the step signal and introduced to the feedforward control. Angle and displacement response 

are evaluated since they are the assigned outputs and control effort is measured. 

 

Figure 16: LQR block diagram 
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This performance of the LQR controller is governed by goals and constraints from 

self-tunning. These include the margin goal, which enforces phase and gain values or 

margins, and it is implemented by selecting the desired signal, which is in the feedback loop, 

for measuring. The step tracking goal is also involved in self-tunning and from its name is 

related to the step response. The purpose is to make the closed-loop step response match the 

desired one. This is achieved by setting a certain time constant and the desired overshoot to 

the values the user desire to achieve. The tracking goal includes following the step signal 

commands with a certain preset performance. The pole goal involves constraining the 

dynamics of the system by setting the region of the pole location. These self-tunning goals 

are further described in figures 18 19 20 and 21 

 

 

 

Figure 17: Margin Goal 
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Figure 18: Step Tracking Goal 
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Figure 19:  Tracking goal 
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Figure 20:  Poles Goal 

The results are described in figures 22 and 23. 
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Figure 22 LQR: Control Effort with respect to time 

3.5 Simulation: LQR with Minimum-Order Observer MOO 

The LQR controller has shown a significant enhancement in performance in 

comparison with the PID controller. However, it requires additional sensors which can be 

computationally and cost-wise expensive to include in real life application or implementation 

on the real robot. Therefore, the LQR controller was modified to be an MOO and was tested 

Figure 21: LQR:  Displacement and tilting angle responses in meter and degrees, respectively, in function of time in 

seconds 
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on the model for performance assessment. The LQR with MOO will be further elaborated 

after setting the inverted pendulum model involved in this work.  

3.5.1 Inverted Pendulum Model  

 

 

Figure 23: Inverted Pendulum Free Body Diagram [10] 

Theoretically, the inverted pendulum consists of a mobile cart-rail system with a 

swaying pole connected as shown in figure 24. It is usually modeled as a rigid pole fastened 

to a rigid cart through a frictionless joint.  At rest, the pole will fall, due to gravitational force. 

The non-linear model of the inverted pendulum is given by the MathWorks tutorial [10], 

where the equations are obtained by the Newton’s second law method separately first on the 

cart’s during horizontal direction, where: 

Ʃ𝐹⃗ = 𝑀𝑎⃗                                                      (5) 

 M𝑥̈+b𝑥̇+N=F (6) 

          Adding the forces in the horizontal direction of the pendulum will yield following: 

 N = m𝑥̈+ ml Ɵ̈cos θ- ml Ɵ̇2sin θ (7) 
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          Substituting (6) in (7) we get: 

 (M + m)𝑥̈ + b𝑥̇- ml Ɵ̇2sin θ + ml Ɵ̈cos θ = F (8) 

 For the equation of motion of the pendulum in the vertical direction, we get: 

 PsinƟ+NcosƟ-mgsinƟ=mlƟ̈+ m𝑥̈cosƟ (9) 

 To remove the P and N terms in the above equation, we can add the moments of 

the pendulum’s centroid: 

     -PlsinƟ-NlcosƟ=IƟ̈    (10) 

 Combining (9) and (10), we get the following 

 (I + 𝑚𝑙2) Ɵ̈ +mgl sin θ= - ml𝑥̈ cos θ (11) 

 Where “I” is the mass moment of inertia of the pendulum; M and m are masses of 

the cart and pendulum respectively; b is friction’s coefficient of the cart; l is the length to the 

pendulum’s center of mass; F is the external force applied to the cart; x is the cart’s position; 

theta Ɵ, the pendulum angular distance from the negative y-axis [10]. 

These sets of equations need to be linearized, since the control techniques apply to 

linear systems only. Linearization will be done by setting the equilibrium position along the 

positive y-axis where Ɵ= 𝜋, if the system will remain in this equilibrium with no more than 

20 degrees deviation [10]. Therefore, Ɵ= 𝜋+Ø, where Ø equals 20 degrees. By assuming this 

small deviation, we can set the following approximations: 

 cosƟ=cos(𝜋+Ø) ≈ -1 (12) 

 sinƟ=sin(𝜋+Ø) ≈ - Ø (13) 

 Ɵ̇2=Ø̇2≈ 0 (14) 

    By substituting the mentioned approximations, we obtained the following 

linear equations: 

 (I + 𝑚𝑙2) Ø̈ -mgl Ø= ml𝑥̈  (15) 

 (M + m)𝑥̈ + b𝑥̇- ml Ø̈ = F (16) 

     To get the linearized system equations’ transfer functions, the equations 15 &16 

must be subjected to Laplace transform assuming zero initial conditions [10]. Since transfer 

functions demonstrate the relationship between one single input single output, we will obtain 

after calculations [10], two transfer functions, where the input in both is the external force 
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applied labeled as U, and the output is angular position labeled as ɸ, and the horizontal 

position labeled as X in the first (17) and second transfer functions (19) as shown below [10].  

ɸ(s)

𝑈(𝑠)
=

𝑚𝑙
𝑞 𝑠

𝑠3 +
𝑏(𝑙 + 𝑚𝑙2)

𝑞 𝑠2 −
𝑚𝑔𝑙(𝑀 + 𝑚)

𝑞 𝑠 −
𝑏𝑚𝑔𝑙

𝑞

 [
𝑟𝑎𝑑

𝑁
](17) 

Where:  

 q= [(M+m)(I+m𝑙2)-(𝑚𝑙)2] (18) 

the second transfer function is represented by the cart’s position with respect to the 

external force: 

X(s)

𝑈(𝑠)
=

(𝐼 + 𝑚𝑙2)𝑠2 − 𝑔𝑚𝑙
𝑞

𝑠4 +
𝑏(𝑙 + 𝑚𝑙2)

𝑞 𝑠3 −
𝑚𝑔𝑙(𝑀 + 𝑚)

𝑞 𝑠2 −
𝑏𝑚𝑔𝑙

𝑞 𝑠
[
𝑚

𝑁
](19) 

The above linearized equations (17) and (19), can also be expressed in state space 

representation, where the system can be labelled as single input multiple output SIMO. 

Therefore, in in this representation, one can attempt to control both the pendulum’s angle 

and the cart’s position [10]: 

[

𝑥̇
𝑥̈

Ø̇

Ø̈

] =

[
 
 
 
 
 
0 1 0 0

0
−(𝐼 + 𝑚𝑙2)𝑏

𝐼(𝑀 + 𝑚) + 𝑀𝑚𝑙2
𝑚2𝑔𝑙2

𝐼(𝑀 + 𝑚) + 𝑀𝑚𝑙2
0

0 0 0 1

0
−𝑚𝑙𝑏

𝐼(𝑀 + 𝑚) + 𝑀𝑚𝑙2
𝑚𝑔𝑙(𝑀 + 𝑚)

𝐼(𝑀 + 𝑚) + 𝑀𝑚𝑙2
0
]
 
 
 
 
 

[

𝑥
𝑥̇
Ø

Ø̇

] +

[
 
 
 
 
 

0
(𝐼 + 𝑚𝑙2)

𝐼(𝑀 + 𝑚) + 𝑀𝑚𝑙2

0
𝑚𝑙

𝐼(𝑀 + 𝑚) + 𝑀𝑚𝑙2]
 
 
 
 
 

𝑢 

(16) 

y=[
1 0 0 0
0 0 1 0

] [

𝑥
𝑥̇
Ø

Ø̇

]+[
0
0
] 𝑢 

 

(20) 

Robots total weight coefficient of friction b, length to chassis center of mass l and 

mass moment of inertia I of the chassis are given in Table 5. I, l and m were calculated by 

assuming that the chassis is presented as a rectangular prism as shown in figure 25. The 

dimensions and mass of this prism are calculate based on the prior values previously 
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tabulated, were the mass, height, l and I are presented in the below equations, 21 22 23 and 

24respectively:     

 m=mass(layers)+mass(1st set of rods)+mass(batteries)+mass(2nd set of 

rods)*2 (21)   

 h= thck (base)+L (1st set of rods)+thck (middle layer)+L (2nd set of rods)+thck (top 

layer)   (22)   

where thck is the thickness and L is the length             

d and w are the length and the width of the top bottom or middle layer respectively. 

 l=h/2 (23) 

 I=
1

12
m(ℎ2+𝑑2) (24) 

I was chosen according to our designated axis of rotation “x” 

 

Figure 24: Rectangular prism mimicking the chassis [14] 

Table 5: Robot's Characteristics 

 Label Value Unit  

Mass of the Cart M 0.55 Kg 

Mass of the Chassis m 0.4696 Kg  

Length to chassis center of mass  l 3.59 cm 
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Coefficient of friction of the cart  b 0.1 N/m/sec 

Mass moment of inertia of the Chassis I 0.00046487 Kg.m^2 

 

3.5.2 LQR with MOO 

LQR controller can be classified into a system including an observer, which will be 

discussed next, and into a system without observer represented in the above-mentioned 

theory.  

LQR with observer or full-state feedback system is demonstrated in Figure 26.  

 

Figure 25: LQR (real plant) with Observer Design [12] 

In the ideal LQR design it is assumed that all state variables are known to get the 

feedback. However, this is not the case in many real existing and non-ideal systems, either 

due to inability to ideally measure all state variables or due the sensors’ cost [12]. In systems 

including observer, it will be shown how all state variables are calculated using one or few 

measured states: this case is called Minimum-Order Observer [12]. State estimation can be 
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calculated according to the below equation which can be acquired by looking at the observer 

plant in Figure 26 excluding till now the signal coming from F: 

                                              𝑥̇̂ = 𝐴𝑥̂+By                                                              (25) 

Where 𝑥̂ is the estimated true state: x. This observer will properly operate if the initial 

condition x (0) is known, which will enable setting 𝑥̂(0) equal to it. In real cases the initial 

condition is rarely well known, which will lead the error expressed in (26) to converge too 

slowly to zero. 

                                                𝑥̃=x-𝑥̂                                                                      (26) 

Hence,  

                                     𝑥̇̃=A𝑥̃ or 𝑥̃(0) =x (0)-𝑥̂(0)                                                  (27) 

 The velocity of the error as it converges to zero is identical to the dynamics 

of A, but its convergence to zero velocity can never meet the true state. To achieve faster 

convergence, F feedback is introduced as seen in Figure 26, which corrects the model by an 

added signal using the multiplied or amplified state(s) error value. By looking now at Figure 

26, we can infer the following equation:  

          𝑥̇̂ = 𝐴𝑥̂+By+F(u-C𝑥̂) Or 𝑥̇̂ = (𝐴 − 𝐹𝐶)𝑥̂+By+Fu                                   (28) 

 𝑥̇̂ will be known as “ethatilda”, and A-FC will be known as the Â, B will be 

B̂. F calculation design or tunning will be done in the same manner as finding K, either by 

manual pole placement with coefficient comparison or with LQR method. 

 

 

 

Figure 26: LQR MOO block diagram 
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Figure 27: MOO block diagram 

  Transformation block is translated into:  

𝑥̃ = Ĉ𝑥̂+D̂y  (29) 

Figure 27 represents the LQR with MOO block diagram followed by the MOO 

subsystem, where its output, “xtilda” represents the estimated states. The performance of this 

controller was also governed by the same constraints and goals as in figures 18 19 20 and 21. 

The results of this controller are shown in figures 29 and 30.  

 

Figure 2928 :LQR MOO:  Displacement and tilting angle responses in meter and 

degrees, respectively, in function of time in seconds 
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Figure30: LQR MOO: Control Effort with respect to time 
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CHAPTER 4 

COMPARISON AND DISCUSSION 

Comparison and discussion will be done between the 3 controllers in terms, of control 

metrics and performances for the displacement, angle, and control effort responses. 

4.1 Displacement  

First, Figure 31, shown the displacement response for each controller overlayed on 

the same graph, along with Table 6 to explicitly highlight the difference. 

 

Figure 29: Displacement response with respect to time for PID (yellow), LQR (red) & LQR 

with MOO (blue) 

Table 6: Displacement: Control metrics for PID LQR & LQR with MOO 

Displacement PID LQR LQR with MOO 

Rise Time  4.78 s 3.85 s 3.78 s 

Settling Time 23.2 s 10.65 s 17.7 s 
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Overshoot 1.23 m 1.038 m  1.18 m 

Undershoot - 0.9984 m  0.96 m 

Steady State Error 0.3 % 0 % 0.1% 

 

From figure 31, one can directly tell that the PID response was the slower first in 

terms of rise and settling times, in addition to the high overshoot which is visually clear. 

From the above snip alone, one cannot determine the steady state error however from figure 

15 the steady state error was calculated and found to be 0.3 % as tabulated. There was no 

significant undershoot in the PID response. On the other hand, LQR response was faster in 

terms of settling time with no steady state error and very low overshoot and undershoot, 

however it may have taken a slightly more rise time than LQR with MOO. The shortest rise 

time in LQR with MOO was followed by a higher overshoot and under shoot and a longer 

settling time with a higher steady state error when compared to LQR alone. However, when 

compared to PID the displacement response in LQR with MOO was more stable. 

4.2 Angle  

Figure 32 shows the tilting angle response for the 3 controllers also recorded from 

the same scope, along with the control metric as in Table 7. 
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Figure 30: Angular response with respect to time for PID (yellow), LQR (red) & LQR with 

MOO (blue) 

Table 7 Angle: Control metrics for PID LQR & LQR with MOO 

Angular Displacement PID LQR LQR with MOO 

Rise Time 0 1.34 s 2.168 s 

Settling Time 15.8 s 12.13 s 11.33 s 

Overshoot 3.24 degrees 0.027 degrees 0.017 degrees 

Undershoot -0.78 degrees -0.001122 degrees -0.0033 

Steady State Error 0.15 % ≈0 % ≈0 % 

 

Visually, PID angular response was the poorest, due to the significant very high 

overshoot and undershoot, and the longest settling time. Comparing between the 2 versions 

of LQR, the performance was somehow close. The LQR rise time and undershoot were less 
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than LQR with MOO, however, the latter took a slightly less time to settle and made a slightly 

less overshoot. 

4.3 Control Effort 

The control effort is the reflection of the above-mentioned performances which will 

also be presented in an overlay of control effort responses as in figure 33, and in Table 8 

which recorded the control effort range between 0 and 0.2 seconds. 

 
Figure 31: Control effort with respect to time for PID (yellow), LQR (red) & LQR with 

MOO (blue) 

Table 8: Control Effort for PID LQR & LQR with MOO 

 PID LQR LQR with MOO 

Control Effort [2.66, -9.3] [0.6, -1] [0.25, -2.25] 

 

The PID high angular overshoot was corrected by applying a higher control effort as 

shown in Figure 33 and in table 8, the response remained fluctuating which translates an 

unstable system. The LQR controller very good performance was reflected by having the 

shortest dynamic range the LQR with MOO’s dynamic range was longer than LQR, this is 

due to the corrections that were needed to in this controller to stabilize the system at the start. 
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As shown in figure 33, the control effort for the LQR stabilized before that of PID and MOO. 

PID’s control effort remained fluctuating, and MOO took the longest time in stabilizing the 

system (without fluctuation).  
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CHAPTER 5 

CONCLUSION AND FUTURE PERSPECTIVES 

 4.1 Conclusion 

After exhibiting the results of the PID and the LQR controllers on the OSOYOO 

2WD self-balancing robot, we further simulated the model on the LQR MOO controller 

which requires a smaller number of states and is less expensive. The results of these 3 models 

showed that the LQR yielded the most promising results due to the access on all states and 

the presence of the feed forward and the feedback controls which further reduced the error, 

also the application of goals and constraints via the self-tuner played an important role. One 

drawback of the LQR controller is its high cost, due to the need of placing a lot of sensors to 

access all states. LQR with MOO solved the cost issue however it didn’t outperform LQR 

since not all states are measured and therefore the estimation of the rest will not yield same 

performance quality. This is shown in the higher control effort that was need in LQR MOO, 

and the longer displacement settling time. This will lead us to a conclusion that LQR 

outperforms PID, and that LQR controller was the best in stabilizing the system in the least 

amount of time and with the least control effort among LQR with MOO and PID. The greater 

conclusion is that one cannot obtain an optimal controller that best performs with the least 

effort and cost. User must compromise based on his application and choose what to penalize: 

performance cost or effort.  

4.2 Future Perspectives 

For future work, real implementation of the documented controllers will be done on 

the real robot, and result comparison like the one done in this project will be done and both 

results empirical and real will be compared.   
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APPENDIX  

Non-Observer Matlab Code  

M = 0.55; 
m = 0.29; 
b = 0.1; 
I = 0.00267; 
g = 9.8; 
l = 0.053; 
 
p = I*(M+m)+M*m*l^2; %denominator for the A and B matrices 
%http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&secti

on=ControlStateSpace 
A = [0      1              0           0; 
     0 -(I+m*l^2)*b/p  (m^2*g*l^2)/p   0; 
     0      0              0           1; 
     0 -(m*l*b)/p       m*g*l*(M+m)/p  0]; 
B = [     0; 
     (I+m*l^2)/p; 
          0; 
        m*l/p]; 
C = [1 0 0 0; 
     0 0 1 0]; 
D = [0; 
     0]; 
 
states = {'x' 'x_dot' 'phi' 'phi_dot'}; 
inputs = {'u'}; 
outputs = {'x'; 'phi'}; 
 
sys_ss = ss(A,B,C,D,'statename',states,'inputname',inputs,'outputname',outputs); 
 
poles = eig(A) 
 
co = ctrb(sys_ss); 
controllability = rank(co) 
 
Q = C'*C; 
 Q(1,1) = 1; 
 Q(3,3) = 1; 
R = 1; 
K = lqr(A,B,Q,R); 
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Minimum-Order Observer  Matlab Code 

M = 0.55; 
m = 0.29; 
b = 0.1; 
I = 0.00267; 
g = 9.8; 
l = 0.053; 
 
p = I*(M+m)+M*m*l^2; %denominator for the A and B matrices 
%http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&secti

on=ControlStateSpace 
A = [0      1              0           0; 
     0 -(I+m*l^2)*b/p  (m^2*g*l^2)/p   0; 
     0      0              0           1; 
     0 -(m*l*b)/p       m*g*l*(M+m)/p  0]; 
B = [     0; 
     (I+m*l^2)/p; 
          0; 
        m*l/p]; 
C = [1 0 0 0; 
     0 0 1 0]; 
D = [0; 
     0]; 
 
states = {'x' 'x_dot' 'phi' 'phi_dot'}; 
inputs = {'u'}; 
outputs = {'x'; 'phi'}; 
 
sys_ss = ss(A,B,C,D,'statename',states,'inputname',inputs,'outputname',outputs); 
 
poles = eig(A) 
co = ctrb(sys_ss); 
controllability = rank(co) 
ob = obsv(sys_ss); 
observability = rank(ob) 
Q = C'*C; 
 Q(1,1) = 1; 
 Q(3,3) = 1; 
R = 1; 
K = lqr(A,B,Q,R); 
Cnew=[C(:,1) C(:,3) C(:,2) C(:,4)]; 
  
Bnew=[B(1,:);B(3,:);B(2,:);B(4,:)]; 
  
 Anewi=[A(1,:);A(3,:);A(2,:);A(4,:)]; 
 Anewf=[Anewi(:,1) Anewi(:,3) Anewi(:,2) Anewi(:,4)]; 
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 Knew=[K(:,1) K(:,3) K(:,2) K(:,4)]; 
  
 Jomin=[-40 -40]; 
  
  
Aaa=Anewf(1:2,1:2); 
Aab=Anewf(1:2,3:4); 
Aba=Anewf(3:4,1:2); 
Abb=Anewf(3:4,3:4); 
Ba=Bnew(1:2,:); 
Bb=Bnew(3:4,:); 
 
Ka=Knew(:,1:2); 
Kb=Knew(:,3:4); 
%check minimum observability  
rank(obsv(Abb,Aab)); 
 
Lmin=place(Abb',Aab',Jomin)' 
 
 
Ahat=Abb-Lmin*Aab; 
Bhat=(Ahat*Lmin)+(Aba-Lmin*Aaa); 
%note: in simulink what implemented is:(Aba-Lmin*Aaa); 
 
Fhat=Bb-Lmin*Ba; 
 
Chat=[zeros(2,2);eye(2)]; 
Dhat=[eye(2);Lmin]; 
 
 
Atild=Ahat-Fhat*Kb; 
eig(Atild) 
eig(A-B*K) 
eig(Abb'-Aab'*Lmin') 
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