

Climbing Robot

<u>Presented by</u> Nader Alayan Ali Ajeena Sami Houjairy Mohamad Omar

Friday, May 3,2019

Motivation

- ✓ Last in the field for longer time
- ✓ Reach difficult points
- ✓ Less power consumption

Rafik Hariri University جامعة رفيق الحريري **Review on Attachment Means**

× Only works on ferrous surfaces

× Requires bulky compressed air

Electro-adhesive Prahlad et al., 2008

× Requires high voltage

Daltorio et al., 2005

- ✓ Lightweight
- ✓ Power efficient
- ✓ Operationally quiet

Rafik Hariri University جامعة رفيق الحريري Review on Climbing Mechanisms

Wheel-Leg (Wheg)

Rafik Hariri University جامعة رفيق الحريري Review of previous work ORION

Rafik Hariri University جامعة رفيق الحريري The Climbing Robot

Objectives

Goal:

In addition to building the climbing robot the objective is to give it the ability to carry and operate communication and surveillance tools.

Requirements:

- 1. The robot must climb glass surfaces at any angle.
- 2. The robot will carry camera that must save recorded videos or photos.
- 3. Overall weight must not exceed 150 g.

Constraint:

1. Robot battery was available in Lebanon, and its weight was very heavy.

Outline

Modeling & Analysis

Design Specification

$\psi = 0^{\circ}$ flap

Modeling & Analysis

- Robot motion model
- Simulink model

Design Specification

- Adhesive dimension requirement
- Motor Torque requirement
- Contact surface Area

Experimental Verification

Experimental Verification

- Real Prototype
- Trails
- Climbing Angles
- Overall Weight

Robot Locomotion

Rafik Hariri University جامعة رفيق الحريري Simulink Model of the Robot

Rafik Hariri University جامعة رفيق الحريري Adhesion Dimension Requirement

Rafik Hariri University جامعة رفيق الحريري Motor Torque Requirement

Contact Surface Area

Rafik Hariri University جامعة رفيق الحريري Final Prototype Dimensions

Modeling & Analysis

Design Specification

Experimental Verification

After selecting the motor needed for our robot, we have known all the other electric components needed.

- Battery
- Motor Driver
- DC to DC Boost Converter
- Arduino Nano Microcontroller
- Surveillance Camera

Based on the components specifications (dimensions, weight) we have known the proper dimensions of the chassis and the wheg.

Rafik Hariri University جامعة رفيق الحريري Final Prototype Dimensions

Real Prototype

Modeling & Analysis

Design Specification

Experimental Verification

Rafik Hariri University جامعة رفيق الحريري Trails and Climbing Angles

Modeling & Analysis

Design Specification

Experimental Verification

45°

80°

90°

Rafik Hariri University جامعة رفيق الحريري Trails and Climbing Angles

Modeling & Analysis

Design Specification

Experimental Verification

120°

180°

Rafik Hariri University جامعة رفيق الحريري Power Efficiency / Lifetime

Modeling & Analysis

Design Specification

Experimental Verification

 $time = \frac{capacity \ of \ the \ baterry}{current \ drown \ from \ the \ battary}$

 $time = \frac{2Ah}{1.2A} = \frac{2A * 60min}{1.2A} = \frac{120A * min}{1.2A} = 100min$

Overall Weight

Modeling & Analysis	Design Specification	Experimental Verification
COMPONENT	WEIGHT	✓ Requirement
MOTOR	28 g	
DC TO DC CONVERTER	4 g	
BATTERY	42g	
ARDUINO NANO	6 g	
CAMERA	4 g	Accomplished
CHASSIS AND WHEGS	40 g	Accomplished
MOTOR DRIVER	2 g	
DOUBLE SIDE AND MICRO SUCTION TAPE	4 g	
BREAD BOARD AND WIRES	18 g	
TOTAL	148 g	

Conclusion

- Built a functional climbing robot that is able to reach and climb specifically acrylic surfaces at any angle.
- Our robot is much cheaper than other autonomous quads and executes the same basic commands such as reaching difficult places, record and save data.
- Learnt a lot of things (Adhesion, Mechanisms, Modeling and Simulation)

Recommendations

- ✓ Improve maneuverability of the robot
- ✓ Replace worm gears with spur gears
- ✓ Use one shaft between two motors
- ✓ Change the motors

References

- A. G. Dharmawan, P. Xavier, D. Anderson, K. B. Perez, H. H. Hariri, G. S. Soh, A. Baji, R. Bouffanais, S. Foong, H. Y. Low, K. L. Wood,"A bio-inspired miniature climbing robot with bilayer dry adhesives: Design, Modeling, and experimentation", Proceedings of the ASME 2018 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2018, August 26-29, 2018, Quebec City, Quebec, Canada.
- Nguyen, A. D., & Shimada, A. (2015). Equilibrium control on four-limbed climbing robot. *Applied Mechanics and Materials*, 799-800, 1021-1027. doi:<u>http://dx.doi.org/10.4028/www.scientific.net/AMM.799-800.1021</u>
- 3. Tlale, N. S. (2006). A MODULAR DESIGN OF A WALL-CLIMBING ROBOT AND ITS MECHATRONICS CONTROLLER. South African Journal of Industrial Engineering, 17(2), 197-208. Retrieved from <u>https://search.proquest.com/docview/199308361?accountid=158790</u>
- Shen, W., Gu, J., & Shen, Y. (2006). Permanent magnetic system design for the wall-climbing robot. *Applied Bionics and Biomechanics*, 3(3), 151-159. Retrieved from https://search.proquest.com/docview/200191888?accountid=158790
- 5. "Design and Analysis of A Miniature Two-Wheg Climbing Robot with Robust Internal and External Transitioning Capabilities" Darren C. Y. Koh1;*, Audelia G. Dharmawan1;*, Hassan H. Hariri1;2, Gim Song Soh1, Shaohui Foong1, Roland Bouffanais1, Hong Yee Low1, and Kristin L. Wood1.

References

- Nansai, S., & Mohan, R. E. (2016). A survey of wall climbing robots: Recent advances and challenges. *Robotics*, 5(3), 14. doi:http://dx.doi.org/10.3390/robotics5030014
- Xu, F., Wang, B., Shen, J., Hu, J., & Jiang, G. (2018). Design and realization of the claw gripper system of a climbing robot. *Journal of Intelligent & Robotic Systems*, 89(3-4), 301-317. doi:http://dx.doi.org/10.1007/s10846-017-0552-3
- Xuyan, H., Yilin, S., Shengyuan, J., Long, L., Chen, T., Lining, S., & Zongquan, D. (2018). Adhesion mechanism of spaceclimbing robot based on discrete element and dynamics. *Advances in Mechanical Engineering*, 10(4) doi:http://dx.doi.org/10.1177/1687814018772934
- Xu, Y., & Liu, R. (2017). Concise method to the dynamic modeling of climbing robot. Advances in Mechanical Engineering, 9(2) doi:http://dx.doi.org/10.1177/1687814017691670

THANK YOU

