SELF-BALANCING ROBOT

Capstone Project

Presented by

Mohammad Saydeh

Rafik Hariri University جامعة رفيق الحريري

Background & Motivation

Principle of Inverted Pendulum

Literature Review

Purpose

Control Methods

Modeling of the 2WD Robot

Simulation: PID

Simulation: LQR

Comparison and Discussion

BACKGROUND: SELF-BALANCING ROBOTS

Require control systems

Invention started from 1980s

Non-linear & unstable

Sustainable Design

Used in multiple fields

Balanduino

Segway

Legway

MOTIVATION

Newly and continuously growing field

Considered a sustainable and multi-purpose robot

Using Simscape platform to implement a modeled version of the robot

Possibility of comparing different control algorithms

Background & Motivation

Principle of Inverted Pendulum

Literature Review

Purpose

Control Methods

Modeling of the 2WD Robot

Simulation: PID

Simulation: LQR

Comparison and Discussion

PRINCIPLE OF INVERTED PENDULUM IP

Other than TWSBRs, IP's applications:

- Human Walking Robots
- Earthquake resistant building design
- Missile Launchers

Background & Motivation

Principle of Inverted Pendulum

Literature Review

Purpose

Control Methods

Modeling of the 2WD Robot

Simulation: PID

Simulation: LQR

Comparison and Discussion

LITERATURE REVIEW

An & Li 2013

LQR & PID Simulations' Comparison

• Controlling self-balance

• PID's feedback: either tilt angle or tilt angle rate

- LQR: involves combining tilt angle tilt angle rate and position
- LQR achieved steady state faster than PID

Rahman et al., 2018

LQR PID & FLC Comparison

- Implemented on a TWSBR using ROS and Gazebo
- PID gave the most stable response in the real time Pitch angles plot
- LQR was the faster
- FLC was non-stable due to inefficient tuning

ETH Zurich University, 2022

Design and implement of a new form of a self balancing robot (2whld robot – 4whld robot, and quadruped)

LQR PID & FLC Comparison

- Implemented on a two-wheeled inverted pendulum mobile robot
- Feedback composed of tilt angle and position
- FLC showed less overshoot and faster response but consumed higher energy
- LQR showed faster response and less overshoot than PID

Bature et al., 2014

LQR & PID Comparison

- TWSBR MATLAB simulation and real implementation
- Both met the specifications: less than 200 ms setting time &less than 5 degrees tilt
- PID had higher overshoot but less steady state error
- LQR had less overshoot and minimal steady state error

Background & Motivation

Principle of Inverted Pendulum

Literature Review

Purpose

Control Methods

Modeling of the 2WD Robot

Simulation: PID

Simulation: LQR

Comparison and Discussion

PURPOSE

Modeling the OSOYOO 2WD Robot using Simscape Simulate different control algorithms (PID & LQR) to ensure system stability

Compare the algorithms' performances

Background & Motivation

Principle of Inverted Pendulum

Literature Review

Purpose

Control Methods

Modeling of the 2WD Robot

Simulation: PID

Simulation: LQR

Comparison and Discussion

CONTROL METHODS

PID

- SISO
- Minimize error
- Can be tuned using Kp, Ki & Kd parameters
- Kp: Present
- Ki: Past
- Kd: Future

LQR

- MIMO/SIMO
- Based on States
- Feedforward & Feedback Controls
- Governed by gains that minimize the cost function :
 - $J = \int \{x'Qx + u'Ru + 2 * x'Nu\} dt$

Background & Motivation

Principle of Inverted Pendulum

Literature Review

Purpose

Control Methods

Modeling of the 2WD Robot

Simulation: PID

Simulation: LQR

Comparison and Discussion

MODELING OF THE 2WD ROBOT

MODELING: CART

	Unit			
Shape	Brick			
Dimensions	[1.5,1.5,18]		cm	
Mass	345		g	
	Unit			
	Wheel Body			
Shape	Cylinder	Cylinder		
Radius	2.36	3.2	cm	
Length	2.57	2.6	cm	
Mass	23.4	g		

MODELING: CART

MODELING: CHASSIS

Levels								Uni
								t
	Base	Controller	Middle	-	Тор		Battery	
Shape			Brick					
Dimensions	imensions [12.58,8.2, [8.22 6.19 [12.58,8.2,		.2,	[12.58,8.2,0.		[6,4,1.	cm	
	0.16]	1]	0.16]	16] 16]		16] 1]		
Mass 107.8		69.6	69.6 63		63		105	g
		Rods					Unit	
	1 st Set 2 nd Set							
Shape		Cylinder						
Radius/rod		0.5	0.5	0.5		cm		
Length/ rod		4.4	2.3	2.3		cm		
Mass/ rod		6.1	2.9	2.9		g		
Number/Set		4 8			Rods			

MODELING: CHASSIS

Background & Motivation

Principle of Inverted Pendulum

Literature Review

Purpose

Control Methods

Modeling of the 2WD Robot

Simulation: PID

Simulation: LQR

Comparison and Discussion

SIMULATION: PID

SIMULATION: PID

- Recording "angle", "displacement", and "control effort" responses with respect to time
- The robot is controlled via displacement force "f"
- PID Feedback is received from position sensor & gyroscope "p" & "q"
- Kp, Kd and Ki gains are adjusted in each of the PID controllers

Background & Motivation

Principle of Inverted Pendulum

Literature Review

Purpose

Control Methods

Modeling of the 2WD Robot

Simulation: PID

Simulation: LQR

Comparison and Discussion

SIMULATION: LQR

LQR

LQR CONTROLLER SPECS

Margins Goal

Name: MarginsGoal1

Purpose Enforce specific gain and phase margins (disk margins for MIMO feedback loops).

Feedback Loop Selection

Measure margins at the following locations:

SelfbalselftunerMoo/Sum5/1

+ Add signal to list

Measure margins with the following additional loops open:

🏞 X

+ Add loop opening location to list

Desired Marg	ins	
Gain margin:	6	dB
Phase margin:	40	de

Step Tracking Goal Name: StepTrackingGoal1 Purpose Make specific closed-loop step response closely match the desired response. Step Response Selection Specify step-response inputs: 🛆 🕁 🏞 🗡 SelfbalselftunerMoo/Step1/1[xref] Add signal to list Specify step-response outputs: 🕁 🕁 🏞 🗙 SelfbalselftunerMoo/Sum1/1 Add signal to list Compute step response with the following loops open: + Add loop opening location to list Desired Response Specify as First-order characteristics O Second-order characteristics Custom reference model Time constant: 10 Overshoot (%): 2

ame: TrackingGoal1				
Purpose	eecribed perfr	rmanc	he ed	
idelity. Limit cross-coupling in MIMO	systems.	mane	e anu	
Response Selection				
Specify reference inputs:				
SelfbalselftunerMoo/Step1/1[xref]		<u>A</u> 3	1 3	- ×
+ Add signal to list			_	
Specify reference-tracking outputs:				
SelfbalselftunerMoo/Subsystem/1		<u>A</u> 3	23	- X
+ Add signal to list			_	
Evaluate tracking performance with	the following	loops (open:	
Add loop opening location to list	t			
Tracking Performance				
Specify as				
O Response time, DC error, and p	beak error			
Peepopee Time:	A			
Steady-state error (%):	0.1			
Peak error across frequency (%):	100			
Options				
Enforce goal in frequency range	[0 Inf]			rad/
Adjust for signal amplitude	No			
Apply goal to				
All models				

Poles Goal Name: PolesGoal1 Purpose Constrain the dynamics of the closed-loop system, specific feedback loops, or specific open-loop configurations. Feedback Configuration Compute poles of: O Entire system Specific feedback loop(s) Compute poles with the following loops open: + Add loop opening location to list Pole Location Keep poles inside the following region: Minimum decay rate: 0 Minimum damping: 0.7 45 Maximum natural frequency: Options Enforce goal in frequency range: [0 Inf] rad/s Apply goal to: O All models Only models: [1 2] OK Apply Cancel 2

CONTROL EFFORT

LQR

LQR WITH MOO

The above "Ethatilda" and the measured states "y" are then fed to the transformation block which will output the estimated states "xtilda"

$$\tilde{\mathbf{x}} = \hat{\mathbf{C}}\tilde{\boldsymbol{\eta}} + \hat{\mathbf{D}}y$$

INVERTED PENDULUM TRANSFER FUNCTIONS

Result after applying newton's second law then linearization on Pendulum and car separately

$$(I + ml^2) \ddot{\emptyset} - mgl \not{0} = ml\ddot{x}$$

$$(M+m)\ddot{x} + b\dot{x} - ml\ddot{\emptyset} = F$$

Laplace Transfrom

$$\frac{\Phi(s)}{U(s)} = \frac{\frac{ml}{q}s}{s^3 + \frac{b(l+ml^2)}{q}s^2 - \frac{mgl(M+m)}{q}s - \frac{bmgl}{q}}{\frac{(l+ml^2)s^2 - gml}{q}} \begin{bmatrix} \frac{rad}{N} \end{bmatrix}$$
$$\frac{X(s)}{U(s)} = \frac{\frac{M}{q}s^3 - \frac{mgl(M+m)}{q}s^2 - \frac{bmgl}{q}s}{s^4 + \frac{b(l+ml^2)}{q}s^3 - \frac{mgl(M+m)}{q}s^2 - \frac{bmgl}{q}s} \begin{bmatrix} \frac{m}{N} \end{bmatrix}$$

Where $q = [(M+m)(I+ml^2) - (ml)^2]$

INVERTED PENDULUM STATE SPACE MODEL

$$\begin{bmatrix} \dot{x} \\ \ddot{y} \\ \dot{y} \\ \ddot{y} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & \frac{-(I+ml^2)b}{I(M+m) + Mml^2} & \frac{m^2gl^2}{I(M+m) + Mml^2} & 0 \\ 0 & 0 & 1 \\ 0 & \frac{-mlb}{I(M+m) + Mml^2} & \frac{mgl(M+m)}{I(M+m) + Mml^2} & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 & 0 \\ \frac{(I+ml^2)}{I(M+m) + Mml^2} & 0 \\ \frac{ml}{I(M+m) + Mml^2} \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ \dot{y} \\ \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} u$$

ROBOT'S CHARACTERISTICS

	Label	Value	Unit
Mass of the Cart	Μ	0.5500	Kg
Mass of the Chassis	m	0.4696	Kg
Length to chassis center of mass	I	3.59	cm
Coefficient of friction of the cart	b	0.1	N/m/sec
Mass moment of inertia of the Chassis	I	0.0004648	Kg.m^2
		7	

 $I = \frac{1}{12}m(h^2 + d^2)$

LQR WITH MOO

Minimum Order Observer

LQR CONTROLLER SPECS

Margins Goal

Name: MarginsGoal1

Purpose Enforce specific gain and phase margins (disk margins for MIMO feedback loops).

Feedback Loop Selection

Measure margins at the following locations:

SelfbalselftunerMoo/Sum5/1

+ Add signal to list

Measure margins with the following additional loops open:

🏞 X

+ Add loop opening location to list

Desired Marg	ins	
Gain margin:	6	dB
Phase margin:	40	de

Step Tracking Goal Name: StepTrackingGoal1 Purpose Make specific closed-loop step response closely match the desired response. Step Response Selection Specify step-response inputs: 🛆 🕁 🏞 🗡 SelfbalselftunerMoo/Step1/1[xref] Add signal to list Specify step-response outputs: 🕁 🕁 🏞 🗙 SelfbalselftunerMoo/Sum1/1 Add signal to list Compute step response with the following loops open: + Add loop opening location to list Desired Response Specify as First-order characteristics O Second-order characteristics Custom reference model Time constant: 10 Overshoot (%): 2

ame: TrackingGoal1				
Purpose	eecribed perfr	rmano	he end	
idelity. Limit cross-coupling in MIMO	systems.	mane		
Response Selection				
Specify reference inputs:				
SelfbalselftunerMoo/Step1/1[xref]		<u>A</u> 3	1 3	- ×
+ Add signal to list			_	
Specify reference-tracking outputs:				
SelfbalselftunerMoo/Subsystem/1		<u>A</u> 3	23	- X
+ Add signal to list			_	
Evaluate tracking performance with	the following	loops (open:	
Add loop opening location to list	t			
Tracking Performance				
Specify as				
O Response time, DC error, and p	beak error			
Peepopee Time:	A			
Steady-state error (%):	0.1			
Peak error across frequency (%):	100			
Options				
Enforce goal in frequency range	[0 Inf]			rad/
Adjust for signal amplitude	No			
Apply goal to				
All models				

Poles Goal Name: PolesGoal1 Purpose Constrain the dynamics of the closed-loop system, specific feedback loops, or specific open-loop configurations. Feedback Configuration Compute poles of: O Entire system Specific feedback loop(s) Compute poles with the following loops open: + Add loop opening location to list Pole Location Keep poles inside the following region: Minimum decay rate: 0 Minimum damping: 0.7 45 Maximum natural frequency: Options Enforce goal in frequency range: [0 Inf] rad/s Apply goal to: O All models Only models: [1 2] OK Apply Cancel 2

CONTROL EFFORT

Background & Motivation

Principle of Inverted Pendulum

Literature Review

Purpose

Control Methods

Modeling of the 2WD Robot

Simulation: PID

Simulation: LQR

Comparison and Discussion

DISPLACEMENT

ANGLE

CONTROL EFFORT

<u>VIDEO</u>

📣 MATLAB R2018a							– 0 X
HOME PLOTS APPS	MECHA	ANICS EXPLORERS	VIEW			E ? - Search Documentation	🔎 Mohammad 👻
File Explorer Simulation View Tools Help	p						
🔍 🖳 🕞 🛛 😓 💢 🕋 🗗 🗗 🗇 🗇	i 😰 🗄	🗾 🛃 🛃 View co	nvention: Z up (XY Top) 🗸 🔌	\$ @ + + 4 4 ↓ (9 🥪		
		MENU AND TOO	DLBARS				<u> </u>
🔶 🔁 🔀 📙 🕨 C: 🕨 Program Files 🕨 matl	lab 🕨 R201	8a ▶ bin ▶					→ <i>P</i>
Mechanics Explorers - Mechanics Explorer-Selfbalself	ftunerMoo						⊙ ×
Mechanics Explorer-Selfbalpid2 X Mechanic	cs Explorer-	SelfbalLQR 🛛 Mec	hanics Explorer-SelfbalselftunerMoo 🛛 📎				
Serbaisentunervioo			X Z	T = [0,30]		1X	Time 30
Current Folder	$\overline{\mathbf{v}}$	Z Editor - C:\Users\n	nohammad\Desktop\LIB SBR\mysbr.m				▼ ×
Workspace	۲	Command Window					\odot

Background & Motivation

Principle of Inverted Pendulum

Literature Review

Purpose

Control Methods

Modeling of the 2WD Robot

Simulation: PID

Simulation: LQR

Comparison and Discussion

CONCLUSION & FUTURE PERSPECTIVES

- LQR somehow gave the most promising results
- However, LQR is the most expensive in terms of sensors
- There is no optimal controller that meets all user requirements
- User must compromise based on his application and choose the best controller

Future Perspectives

- Real implementation on the actual robot
- Performance comparison between actual and empirical results

THANK YOU