

THE WORKSHOP CHAIR

Design and fabrication of multipurpose wheelchair for physically disabled people

Rafik Hariri University , Mechref Spring 2019 – MECA595b

Introduction

Market Research

Ť

Project Aim

Alternative Wheelchairs

Rafik Hariri University - THE WORKSHOP CHAIR

WORLD MAP

Rafik Hariri University - THE WORKSHOP CHAIR

1,000,000,000 PERSON

According to World Bank Group

IN LEBANON

Rafik Hariri University - THE WORKSHOP CHAIR

15% OF LEBANESE POPULATION

Lebanese people living in Lebanon

10% OF PALESTINIAN REFUGEES and 22.8% OF SYRIAN REFUGEES

whom fled to Lebanon because of war

DISABILITIES

- Vision Impairment
- Deaf or hard of hearing
- Health conditions
- Physical disability

Etc.

140,000 OUT OF THE 900,000 DISABLED LEBANESE HAS PHYSICAL DISSABILITY

INEQUALITY

- Economic
- Social
- Political

WORKSHOP CHAIR

A personal positioning device uniquely designed for lifting and lowering the human body for work under and around virtually anything

IN LEBANON

Rafik Hariri University - THE WORKSHOP CHAIR

STUDY

Sample of 200 randomly chosen physically disabled people Aged between 14 and 40 years

Disabled people and Education

- In Lebanon, most mainstream schools exclude children with disabilities.
- Education quality for disabled children in institutions is low.

almost half were not promoted from primary

• Younger graduates are scoring significantly lower than older graduates.

only 23 percent of the 14–20 age group had been promoted from primary school whereas were 40 years old completed their education

Disabled people and Employment

• In Lebanon, most disabled people are jobless.

45.5 % of the sample were employed

workers"

50.5% were unemployed, including the "discouraged

 One of the most worrying findings of the study was that young people were scoring lower in educational attainment, and were also more likely to fail in the market.

PROJECT AIM

This chair is designed especially for physically disabled millennials who would like to work in industrial and automation fields.

ALTERNATIVE WHEELCHAIRS

DIFFERENT WHEELCHAIRS

There are 3 types of electronic wheelchairs other than the well-known manual one.

Scewo Bro Wheelchair

In addition to its normal driving mode, Scewo Bro has rails that allows the user to drive in natur e on bumpy or muddy roads. It also can climb stairs at a 1 step per second. Furthermore, it can i ncline up to 47 degrees.

WHILL Model M

Wheelchair It can cross over obstacles 3 inches high due to its large omni wheels that can move in any direction. It is powered by 2, 12V 50Ah Batteries that uses a 6A charger.

KD Foldlight Wheelchair

It is electronic wheel chair that has the ability to fold and become easy to carry. Also, it is airline friendly wheel chair

STANDING MECHANISMS

Standing wheelchairs

 \rightarrow Principle of folding chair

 \rightarrow Hydraulic control system

Standing wheelchairs

 \rightarrow Scissors Mechanism

Targeted postures

31

Chair's Dimensions

Anthropometric measurements

Measurement	Letter	Female	Male
Standing Overhead Reach	А	74.9" – 86.8"	81.2" – 93.7"
Standing Height	В	60.2" - 68.4"	64.8" – 73.5"
Standing Eye Height	С	56.9" - 65.0"	61.4" – 69.8"
Standing Forward Reach	D	30.8" - 36.1"	33.8" - 39.5"
Sitting Height	Е	31.3" – 35.8"	33.6" - 38.3"
Sitting Eye Height	F	42.6" - 48.8"	46.3" - 52.6"
Sitting Knee Height	G	19.8" – 23.2"	21.4" - 25.0"
Seat Depth	н	16.9" – 20.4"	17.7" – 21.1"

Beam

Rafik Hariri University - THE WORKSHOP CHAIR

I

Ė

Pulley

The Pulley pitch is MXL. The NO. of teeth is 18.

Racked Beam

Seat Frame

Rafik Hariri University - THE WORKSHOP CHAIR

Rafik Hariri University - THE WORKSHOP CHAIR

CHAIR'S ASSEMBLY

Stress Analysis

Free Body Diagram of Scissors Mechanism

Assumptions

- 1, 2, 3 and 4 (points) are rollers (gear)
- 1 and 2 motors are DC braked
- 3 and 4 can move
- Wis the weight of the user.

External Reactions

 $\sum Fx = 0$

 $fx_1 = fx_2$

 $\sum Fy_1 = 0$

But assuming

Then,

$$fy_{1} + fy_{2} + fy_{3} + fy_{4} - W = 0$$

$$fy_{1} = fy_{2} = fy_{3} = fy_{4}$$

$$\frac{W}{4} = fy_{1} = fy_{2} = fy_{3} = fy_{4}$$

Rafik Hariri University - THE WORKSHOP CHAIR

Free Body Diagram of link with joint

W W 4 H W 4

Internal Reactions – 1

 $\sum Fy = 0$

$$f\cos\theta + \frac{W}{4} + \frac{W}{4} - W = 0$$

Assuming θ will be determined to fit a normal sitting state

$$f = \frac{\frac{W}{2}}{\cos\theta}$$

Implies the reaction force of the prismatic

Internal Reactions – 2

 $\sum Fx = 0$

 $fp_x sin\theta + fsin\theta + fp_y cos\theta = 0$

 $\sum Fy = 0$

 $-fp_x cos\theta + fcos\theta + fp_y sin\theta = 0$

Yields a system of 2 equations with 2 unknowns to find the reaction forces of $fp_x \& fp_y$

Rafik Hariri University - THE WORKSHOP CHAIR

Fatigue Failure Analysis

Internal Reactions – 2

 $R_1 = R_2 = \frac{W}{4} = \frac{300 \times 9.81}{4} = 735.35 N$

Cut at A

$$\sigma_{A} = -\frac{My}{I} = -\frac{(735.35 \times 0.5cos70)(\frac{0.125}{2})}{\frac{1}{12} \times 300 \times 1^{2}} = -0.31 Pa$$

$$\sigma_{max} = k_{f} \times \sigma_{A} = 1.7 \times -0.31 = -0.527 Pa$$

From property graphs of aluminum, it is found that $S_{ut} = 758.5 Pa$
 $S_{e} = k_{a}k_{b}k_{c}k_{d}k_{e}S_{e'} = 190 Pa$

Since $\sigma_{max} \ll S_e \rightarrow N = infinity$

CHOOSING ACTUATORS

Degrees of Freedom

$DOF \equiv N^{\circ} of Motors$

According to Gruebler's formula applied on a 3D body, $DOF = 6(N - 1 - J) + \sum_{i=1}^{J} f_i$

We had the first part, the back with seat slider having 1 DOF, the scissors mechanism having 3DOF and finally the wheels having 2 DOF for forward and backward motion.

Hence, we can conclude that we will need to use a maximum of 6 motors in total.

Torque

 $m_{total} = 120 + 180 = 300 \ kg$ $W = m_{total} \times g = 2,943 \ N$ $\frac{W}{4} = 735.75 \ N$

Hence, the force in the y-direction will be $f_{fr} = \mu_s N = 0.8 \times 735.75 = 588.6 N$

The equation of torque is given by $T = I \cdot \alpha = F \cdot r \cdot sin\theta$

Since the wheelchair is in sitting position, then angle between the back and the seat will be $\theta = 90^{\circ}$, then $\sin\theta = 1$

 \therefore T = 600 \times r N.m where r is the radius of the wheel.

Motors' Torque

In this part, we will consider that standing position will be the critical position. In the y-direction,

$$\sum f_y = 0 \ \to F = W = 120 \ \times 9.81 = 1177.2 \ N$$

Using the equation of torque for rack and pinion,

$$T = \frac{F \times d}{2} = \frac{1177.2 \times 0.0182}{2} = 10.71 \, N.m$$

Rafik Hariri University - THE WORKSHOP CHAIR

Rack and Pinion Torque of Scissors

The critical point of the scissors mechanism will be when the 2 rods are perpendicular, then the angle with the base is $\theta = 45^{\circ}$.

$$-W + \frac{W}{4} + \frac{W}{4} + Fsin45 = 0$$

Then, $Fsin45 = \frac{W}{2} = \frac{(120+40)(9.81)}{2} = 784.8$
 $F = 1110 N$
 $\therefore T = \frac{F \times d}{2} = \frac{1110 \times 0.0182}{2} = 10.1 N.m$

Rack and Pinion Torque of Base

Then,
$$Fsin15 = \frac{W}{2} = \frac{(120+180)(9.81)}{2} = 1471.5 N$$

F = 5685.44 N

$$\therefore T = \frac{F \times d}{2} = \frac{5685.44 \times 0.0182}{2} = 51.73 \, N. \, m$$

Aluminum – Sitting Position

Rafik Hariri University - THE WORKSHOP CHAIR

•					
	1	1	0	-	8+
	~	Load	Casel		7
	Safe	ty Fac	tor 🔻		6
	Ф	⊿			U
					5
					4
				H	3
				F	2
					1
					0
Acti	vata	Min	Min : Max.:		8.87 15

Aluminum – Standing Position

Area	7.893E+06 mm^2	
Density	2.738E-06 kg / mm^3	
Mass	381.557 kg	
Volume	1.394E+08 mm ⁴ 3	
Physical Material	(Various)	
Bounding Box		
World X,Y,Z	0 mm, 0 mm, 0 mm	
Center of Mass	708.949 mm, 364.862 mm, 814.14	
Moment of Inc	ertia at Center of Mass (kg mm	
Moment of Inc.	copy To Clipboard	
	OK Cancel	
		V Lo
		Safety F
		Safety F

Rafik Hariri University - THE WORKSHOP CHAIR

12.93 15

Steel

8+

> n 15

Plastic – Sitting Position

		7 803F±06 mm^2
	Density	1.319E-06 kg / mm^3
	Mass	183.826 kg
	Volume	1.394E+08 mm^3
	Physical Material	(Various)
	Bounding Box	
	World X,Y,Z	0 mm, 0 mm, 0 mm
	Center of Mass	709.207 mm, 364.863 mm, 80
	Moment of Inc	rtia at Center of Mass (kg
Min: 3.896	Moment of Ine	ertia at Origin (kg mm^2)
Max 15		Copy To Clipboard
	-	OK C

Rafik Hariri University - THE WORKSHOP CHAIR

15

5 32

✓ Load Case1
Safety Factor ▼
Ø ⊿

69

Plastic – Standing Position

PROPERTIES		
ea	7.893E+06 mm^2	
nsity	1.319E-06 kg / mm^3	
ISS	183.826 kg	
lume	1.394E+08 mm^3	
ysical Material	(Various)	
Bounding Box		
orld X,Y,Z	0 mm, 0 mm, 0 mm	
nter of Mass	709.207 mm, 364.863 mm, 806.32	
Moment of Inc	ertia at Center of Mass (kg mm	
Moment of Inc	ertia at Origin (kg mm^2)	
	Copy To Clipboard	
	OK Cancel	
		Load Case1 •
		Safety Factor *
		\$ ⊿

Min: 2.874

CONTROL

Flowchart

Flowchart

Rafik Hariri University - THE WORKSHOP CHAIR

Components

Components

Arduino Mega

Keypad

Geared DC Motor

Components

Servo Motor

Motor Drive

Pulleys and Timing belt

Final Product

Rafik Hariri University - THE WORKSHOP CHAIR

	Real scale	Price	Small scale	Price
Scissor motors x2	13KN/50cm Linear actuator	\$ 400	1300N/5cm Linear actuator	\$ 100
Seat+ lower fixture motors x3	1200N/40cm Linear actuator	\$ 150	1200N/40cm Linear actuator	\$ 120
Inner scissor pin motors x2	1500N/50cm Linear actuator	\$ 160	150N/5cm Linear actuator	\$ 90
Movement(wheels) X2	High torque dc motors	\$ 600	Dc motors	\$ 60
Chassis material	Aluminum links and sheets	\$ 100 - 200	Filaments for the 3d printer	\$ 20 - 40
Labor for chassis work		\$ 200 - 400	3D Printed	\$ 0.00
Control and electrical work	Arduino Mega +relays(2 per motor) +transistors	\$ 100	Arduino Mega +motor drivers(1 per 2 motors)	\$ 70 - 80

TOTAL PRICE

Real scale prototype\$ 133Small scale prototype\$

\$ 1330 - 1630 \$ 470 - 500

85

REFERENCES

- [1] S. Vishwakarma, "Development of Smart Wheelchair," 2017.
- [2] W. H. Organization, "The global burden of disease: 2004 update.," Geneva, 2008.

[3] T.-H. C. a. S.-J. W. Long-Chang Hsieh, "The Innovative Design of Wheelchair with Lifting and Standing Functions," Proceedings of Engineering and Technology Innovation, vol. 4, pp. 10-12, 2016.

[4] K. Hunziker, "Stand-up unit for stand-up wheelchairs and chairs, particularly therapy chairs". U.S. Patent 0207354 A1, 2010.

[5] Y. C. Yu, " An electric wheelchair bed". Taiwan Patent M492,731, 2015.

[6] D. N. Laslo, "Apparatus for tilting A wheelchair seat". U.S. Patent 5,322,741, 2012.

[7] L. C. H. a. J. B. Huang, "The electric wheelchair integrating sitting, standing, and tilting functions". Taiwan Patent I495,461, 2015.

[8] L. H. C. W. T. H. a. K. W. Z. P. P. Liu, "The lifting structure of seat for wheelchair". Taiwan Patent M 294,932, 2006.

[9] T. A. Kuiken, "Manually operable standing wheelchair," http://www.freepatentsonline.com/7165778.pdf, 2014.

[10] T. A. Kuiken, "Manually operable standing wheelchair," http://www.freepatentsonline.com/7165778.pdf, 2004.

[11] A. &. S. A. &. D. S. T. &. F. D. &. K. S. Ranjan Trivedi, "Design and Implementation of a Smart Wheelchair.," in ACM International Conference Proceeding Series. 1-6, 2013.

[12] G. S., "Living with disability in rural Guatemala: exploring connections and impacts on poverty.," International Journal of Disability, Community and Rehabilitation, vol. 7, no. 2, 2008.

[13] E. Combaz, "Situation of persons with disabilities in Lebanon," K4D Helpdesk, 2018.